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PREFACE

The articles contained herein are the outgrowth of a compu-
ter workshop organized by Dr. John W. Robson* for the Commission
on College Physics in 1968. He succeeded in forming interested
individuals into a Ccmputer Working Group which met several times
during the year; their contributions constitute this volume.

Almost every contributor presented the Editor with a wealth
of material and those segments were selected for inclusion which
szeimed to the latter's judgment to fit most harmoniously together.
This was done with considerable anguish and soul-searching; one
result of this synthesis is that a given contribution does not
necessarily represent the author's best or most unique work, but,
in most cases, only the tip of the iceberg. In consequence, the
Editor has thumpingly urged the authors of the lost masterpieces
to make them available to the general public through the Computer
Library for Instruction in Physics (see the American Journal of
Physics 35, 273 (1967)).

In using the computer in physics education, as distinct from
research, we are not only interzasted in ways of solving problems,
but in how the computer can add a new dimension to the nature and
content of the curriculum through its influence on the topics se-
lected and their mode of presentation. In order to remain relevant
to future needs, basic undergraduate courses must be appropriate-
ly modified to reflect the new points of view associated with com-
puter applications, numerical analysis must be integrated into
course work, and students should be given programming instruction
at an early stage in their education.

The use to which we put the computer depends on the available
facilities. From a pedagogical standpoint these are of three
types--interactive, semi-interactive and noninteractive. Large,
expensive instaliations which process programs in batches are non-
interactive. Smaller and cheaper machines may allow a student to
receive his output within a few minutes, alter his program and
resubmit it, if necessary. These are semi-interactive in that re-
ceipt of ocutput is immediate, but errors or program alterations
necessitate terminating the program. The future widespread use of
the computer in the physics curriculum will result from the avail-
ability of interactive terminals, where the student can receive
output immediately, correct errors and input new instructiocns or
data without terminating his connection with the computer. Hence,
the emphasis in this voiume has been on interactive and semi-in-
teractive facilities.

The computer may be used in the classroom in any of four ways:

Dasaod

*Presently, Dr. Robson is with the Department of Physics at
the University of Arizona, Tucson.
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as an administrator, tutor, simulator or calculator. In the first
mode it may be used simply to administer and grade exams and per-
form other onerous clerical chores. Ir the second mode it may, in
addition, tutor the student; i.e., correct his errors by hint,
precept or example and so lead him along various paths which are
determined by his previous answers and designed to aid him tc over-
come his deficiencies.

The computer can simulate physical reality either as a "black
box" or as a loaded roulette wheel. The "black box" may be a pro-
gram representing a physical system intec which the student enters
the values of certain physical gquantities and then observes the
output from the program in place of an actual experiment. On a
time-shared teletype the student can easily "fiddle with the knobs,”
i.e., change his inputs and observe the results. In the roulette
wheel, or Mocnte Carlo, method the computer generates random numbers
which can be used to simulate phenomena in which chance in a factor.
For example, one could simulate a baseball game using the batting
averages of the players. A player batting .325 would be allowed a
hit each time the three-digit random number representing his time
at bat was between 960 and 324 and called "out" if it was between
325 and 999. Such methods can be applied to problems of gaseous
diffusion, radioactive decay, scattering, etc.

However, it is as a calculator and solver of problems that the
computer should have its greatest impact on physics education. And
rather than have students use programs they do not understand, it
would be preferable to integrate the computer into physics at an
early stage. The major problem is the lack of textual materials
and programs, and the need for wider dissemination of those which
do exist. It is to serve this need that this volume was conceived,
and for this reason, also, programs are presented in FORTRAN or
BASIC, the two mos%t popular languages in use today.

Since the individual authors generally performed their work
prior to the organization of the Computer Working Group, some dup-
lication was inevitable, and, in the case of the harmonic oscilla-
tor--probably the world's most "programmable" elementary problem-—--
was considered beneficial. Thus, we have presentad the work of
Vierling which primarily illustrates the application of an advanced
fourth-order Runge-Kutta method to the theoretical problem, as well
as that of Grimsrud, designed for use in connection with an ele-
mentary pendulum experiment.

The volume opens with "Data Reduction" by Smith, which is in
the nature of a prerequisite to computer-oriented physics, since
it deals with the use of the computer to reduce data to a Gaussian
distribution and also describes an auxiliary program which may be
used to interpret "free-style" input, in which the students' input
to the program is freed from the usual tedious and confusing re-
strictions on format. Following Vierling and Grimsrud is Winder's
article, which describes relativistic two-body coliisions, Grimsrud
having already presented the ronrelativistic case. This leads,
quite naturally, to Mikkelson's simulation of relativistic colli-
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sions in a bubble chamber. The next articles, by Harbron & Miller
and Kinsey & Kenyon, further illustrate the use of the computer

as a simulator; the latter illustrating, too, the Monte Carlo ap-
proach.

Although we have generally elected to avoid the tutorizal mode
in this monograph, Jalbert's treatment of vacuum and low~velocity
ballistics does provide an example of a conversational approach.
Finally, Blum's article attempts to demonstrate how the computer
can be employed in the construction of an open-ended curriculum in
the sense that without much broadening of the conceptual base, as
given by Jalbert, the student can be enabled to treat problems of
greatly increased realism and relevance.

Although the Editor has required contributing authors to cast
their articles in the same format---Introduction, Student Manual,
and Teacher's Guide--a conscious attempt has been made to preserve
individual nuances of style and approach on the grounds that these
subtleties are themselves of interest to the practicing pedagogue.
However,, the Editor takes no responsibility for the absolute rec-
titude of the contributing authors, with the exception of the fi-
nal article in this anthology. Criticisms and suggestions are
welcomed, and remarks directed to particular authors will be for-
warded to them by the Editor. Individual articles may be ordered
separately through the Commission on College Physics, hence the
vnusually verbose footnotes scattered through the text.

The Editor acknowledges the invaluable assistance of Mrs.
Faye von Limbach who prepared the typescript and the flow charts
and whose pithy observations often served as a useful stimulus.
Equally valuable were the tireless and enthusiastic efforts of Mr.
Lee A. Fowler who checked out many of the programs in this work.
Miss Kathryn E. Mervine also assisted in the editing, and the
project enjoyed the wholehearted support c¢f Dr. John M. Fowler,
Director of the Commission on College Physics.

Members and friends of the Computer Working Group, in addi-
tion to those mentioned above, included Alfred Bork, University of
California, Irvine; David J. Cowan and Richerd T. Mara, Gettysburg
College; S.A. Elder, U.S. Naval Academy; Russell K. Hobbie, Uni-
versity of Minnesota; Arthur Luehrmann, Dartmouth College; Anatole
Shapiro, Brown University; Harold Weinstock, Illinois Institute of
Technology; Ronald Winters, Denison University; Claude Xacser,
Leonard Rodberg and Sanders N. Wall, University of Maryland.

By and large the papers presented here do not claim to be
unigque or particularly efficient. Hopefully, as a collection, they
are all of pedagogical interest as regards their presentaticn, the
problem treated and the experiences of their creators. We hope it
may serve as a guide and companion to those who wish to integrate
computers meaningfully into the context of their course work.

Ronald Blum
Commission on College Physics
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INTRODUCTION

This paper describes "GAUS," a program designed to compute
the mean and standard deviation of a collection of laboratory data,
as well as its goodness of fit to a Gaussian (normal) distribution
by means of the chi-squared test. Also described is a general
purpose auxiliary program, "FREE," which allows the students to
input data in a format-free mode. This greatly simplifies the use
of the computer in the classrocm or laboratory, since data can be
written in a natural way and the students need not learn the in-
tricate and often tedious details of formatting, a fruitful source
of time-consuming errors.

Use of computer facilities to support undergraduate physics
laboratory instruction started at Coe College in the academic year
1965-66. A number of programs were writter to facilitate data re-
duction in an intermediate electricity and magnetism laboratory
and later "GAUS" was developsd to help students in an introductory
laboratory gain insight into error of measurement. For the first
two years Coe made use of the IBM 7044 located at the University
of Iowa, twenty miles distant, via a courier service that provided
overnight turn-around. Initially, "GAUS" was used via optical
sense-mark cards developed by the Measurement Research Center in
Iowa City and requiring only a number two pencil for marking.

In the spring of 1967, under an NSF grant, Coe installed an
IBM 1130 with 8K core and 1/2 M disk; that summer existing programs
were modified for the 1130 and, with the help of high school stu-
dents, an extensive library of simple but generally useful subrou-
tines was developed to simplify further programming. This included
the first version of FREE and its associated supportive subroutines.
In the fall of 1967 and again in 1968, the author taught an intro-
ductory physics laboratory with calculus, in which computer use
played a major role. The programs were introduced to the students
as black boxes with little or no reference to their details of op-
eration. Emphasis was on least squares fits of experimental data
for linear acceleration, damped linear acceleration, and damped
simple harmonic motion. It has taken typical students three to
five weeks to really yrasp the concept of least squares fits in
these situations. About 280 students have made use of "GAUS" and
found it a stimulating educational experience.

On the basis of three years' experience, the author has the
following recommendations to make:

1. Simplify input-output problems with a free style card
reader.

2. Develcp a balanced diet of very simple programs that
students can write and/or modify, along with complica-
ted programs such as those used here.

2
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Dor*t expect to teach students very much FORTRAN while
they are simultaneously engaged in more traditional
laooratory experiments.

Be alert for students who have "perscnal relations"
problems with the computer. Some may not get assigned
work done because they feel an antipathy toward the
computer, others may lag behind due to their infatua-
tion with it and associated diversions. Both will need
sympathetic help!

The author wishes to acknowledge the assistance of Dr. Joseph
Kasper of Coe College and Dr. Ronald Blum of the Commission on
College Physics, whc are responsible for much of the documentation
on the Gaussian édistribution in the Student Manual which follows.




STUDENT MANUAL

Gaussian Distribution

Suppose that a measurement of a physical quantity is made,
where it is known that completely random deviations in the mea-
surement occur. Suppose further that the measurement is made
repeatedly, with all sources of systematic error eliminated.

The theory of probability demonstrates that if one plots the
frequency of occurrence of a given value of N as a function of
the value of N; and if one colilects very large numbers of data,
then the graphical representation of the results will ideally be
in the form of a symmetrical curve known as a Gaussian curve, or
Gaussian distribution.

A typical Gaussian distribution, symmetric about the mean
value, N, is shown in Figqure 1; the ordinate, P(N), is the rela-
tive probability (or "probability density”") that any particular
measurement, N, will occur. While in reality the quantity mea-
sured may only take on certain discrete values, we shall find
that the continuous distribution is in fact a very useful tool
for the reduction of such data. The analytical formula for this
curve 1is

P(N) = (2102)” %2 exp[-iN - ®)2/202] (1)

where o2 is an independent parameter known as the variance of

N and its root, o, is called the standard deviation of N; exp(x)
= eX, another notation for the exponential function. The constant
multiplier (2702)-Y%2 is chosen such that the total area under the
curve between the limits - » < N £ «» jis exactly unity. Thus, it
must foliow that the area under the relative probability curve
between, say, Ny and N; is the theoretical probability that a
measurement of N will fall between those two values. Further-
more, although there is some inconsistency in special cases where
N can never actually be negative, such as the count rate from a
radioactive source, this discrepancy is negligible if the area
under P(N) for negative N is only of the order of a few per-
cent, which is generally the case in our experiments.

_ Figure 1 shows two Gaussian curves with the same mean value
N = 9, but two different values of standard deviation, ¢. Al-
though both curves peak at N = N = 9, the curve with greater de-
viation is wider and, consequently, lower, since the area under
each curve must be unity. If one made but one measurement of the
physical quantity involved, and knew that the lower curve applied
then he would have little confidence in it, because on the grounds
of probability there would be a good chance that his one value was
considerasly greater or smaller than the mean. However, if he
made one measurement and knew that the higher curve applied, his
confidence in the measurement would be much higher. This degree

4
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of confidence, or probable deviation from the mean, is stated in
various ways.

og=3

Figure 1. Gaussian distributions for N = 9, ¢ =1, and ¢ = 3.

It is a truly remarkable aspect of physical measurements in-
volving random errors that:

a) If a measurement of some physical quantity is made,
then, because of random fluctuations, it cannot be
taken as entirely reliable, even if there are no
instrumental or human erxrors present. However, the
known Gaussian distribution can be used to furnish
a meaningiful estimate of the validity of the mea-
surement.

b) If sets of measurements are made, then they can be
compared with the ideal Gaussian curve, and devia-
tions in the actual distribution can be used to
check the validity of the results.

The standard deviation is a measure of the random variability of
individual measurements and hence of the confidence we may place in
them. It is often useful to think in terms of units of ¢ about
the mean value, as shown in Figure 2. One can see that 68.3% of
the time an individual measurement taken at random will lie within
+ ¢ of the mean value, and 95.7% of the time within % 20 of the
mean. Furthermore, in statistical theory, it is shown that the
mean value, while it may not be precisely the same as the true val-
ue, is the best estimate we can form of the true value; our results
are no less "scientific" for having taken account of the harsh re-
alities of random errors. It should also be clear from Figure 2
that when N is greater than 20 the fact that P(N) is also de-
fined for N < 0 will not cause any serious errors in estimating
probabilities in radioactive counting experiments from the Gaussian

distribution.

In general N and o are independent of each other; while
repeated reasurements of the period of a pendulum yield an average
value depending primarily on the physics of the pendulum, the stan-

[T . TR TTETar Tt [ FILTTR TN
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dard deviation of the measurements depends on the instrument and
technlque of measurement. Howaver, there is one important situa-
tion in which a very interesting relationship exists between N
and o. Whenever the measurement consists of counting independent
events occurring at random in successive intervals of time (or
space) , then

o = /5

provided that N is moderately large (i.e., ¥ > 10).

For example, if one counted events with a Geiger tube over
a radiocactive source and got 100 counts in some time interval,
such as ten seconds--hence, the standard deviation is o¢ = 10
counts——then 68.3% of the time such a single measurement would
be within * 10 counts of the average number of events due to
that particular source. That is, were we to estimate that 90 =
N < 110, we would be right 68.3% of the time, or in 583 cases
out of 1,000 such measurements. The counting rate, R, would be

R = (100 = 10) counts/ (10 sec)

with a "confidence level™ of 68.3%. Were we willing to make a
looser prediction we could say R = (160 = 20) counts/(1l0 sec),
with a confidence level of 95.7%.

W ————— et - e o i bt b bk & e 5

do -
2

1Z

N.3o
N-.20
N-o
N+o
Ni2 o
N+

Figure 2. Gaussian distributions in intervals of o.

The standard deviation also has the significance that if we

: form the quantity (N - N)2 for each measurement of N and average
all such values, we obtain o¢2; hence, ¢ may also be known as the
root-mean-square (rms) error of a variable. In counting-situations,
where o¢ = /ﬁ:, even one measurement of N affords a basis for
estimating o. However, in most situations one needs several mea-
surements to form an accurate estimate of the standard deviation,
according to the formula

i=M -
z (N-§)2
62 = i=1

M
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where a total of M measurements of counts have been made; N; is
the result of the i-th measurement. (It is actually most correct

to use M-1 1in the denominator of the above expression; however,

this is a subtle theoretical point, and if M is large this is a

negligible effect.)

Now suppose we have collected some statistical data in the
form of repeated measurements. What can be made of them? They
can be compared with the expected Gaussian distribution
by making what is called a "chi-~-squared test”. The quantity "chi-
squared” is computed bi first preparing a histogram, or bar-graph,
showing the number of times (frequency) each measurement appeared,
as a function of the value of that measurement. Actually, each
histogram bar represents the number of times that measurements
lead to values falling in a certain interval; e.g., one bar might
.represent how many times the count was between 90 and 100, the
next bar hcw many times the count was between 100 and 110, etc.

When the completed histogram is at hand, it can be superim-
posed cn the ideal or expected Gau:sian distribution. There will
be a difference between the actual number of values, nj, observed
to fall in the j-th interval and the expected number of values, my,
which the Gaussian distribution predicts will fall in the intervai.
I£, for each such interval, we compute the quantity (nj—mj)z/mj,
the sum over all J intervals is called the chi-squared statistic.

iF (nj- m;)?2
x2 = ) i mj

j=1 .
J mJ

The better the fit of distribution to data, the smaller is x2.

Probability theory tells us, for randomly distributed errors,
the probabilities of obtaining different values of x2 for differ-
ent values of J; thus,; one can check equipment or data for sys-
tematic or nonrandcom errors by comparing the fit of the data to a
Gaussian curve. This information is commonly found in handbooks
in the form of tables which give the probability that x2? will
equal or exceed a certain numerical value. A sample of one line
from such a table is shown below:

Number of Intervals, J There is a probability of
0.99 0.90 0.5C 0.10 0.01
. that the calculated % is equal to or greater than

Thus, there is no unique answer to the guestion: When is a
fit good or bad? Instead, there is only a probabilistic answer.

o ———— Tt uoprer e+ mar 04 AR ak v w a4
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For example, as the excerpt from the table shows, if one measured
a count rate 19 times, plotted the distribution, plotted the ex-

pected Gaussian distribution, computed the value of x2, and found
x2 to be 10, the fit would be quite good. Specifically, there
would be more than a 90% chance that if the experiment were repeat-—
ed the x2 would be greater than 10. On the other hand, if x?
turned out to be as high as 40, the fit would be considered very
bad and it would be unlikely that the distribution represents a
random selecticn from a set of Gaussian distributions.

In collecting data by measuring some quantity over and over,
peculiar instances sometimes arise. For example, if one wzre con-
sistently getting between 360 and 440 counts in one-minute inter-~
vals from a radioactive source, and then in a given one-minute in-
terval got only 120 counts, one would be suspicious of that result.
According to the Gaussian curve, such an anomalous tount is per-
fectly possible, for the Gaussian curve runs to infinity in both
directions from the mean. However, the probability of counts far
from the mean drops off more and more rapidly, the farther they
are from the mean. If one gets a count of 120 in a one-minute
interval, after consistently getting close to 400 each minute, the
thing that should really disturb us is not that this is totally
impossible, but that it is highly unlikely. In fact, it may seem
so unlikely that one would not want to include the result at all,
because it is not typical and would throw the mean value off with
more weight than it deserves. 1In short, one is tempted to reject
that far-off value.

However, such subjective selectivity constitutes rather wan-
ton tampering with the scientific data. The prime requisite for
scientific honesty and objectivity is to let nature speak for her-
self, rather than to interpose the subjective bias of the experi-
menter. The solution to this problem is to adopt a specific cri-
terion, expressly stated, for the acceptability of data. One such
is "Chauvenet's Criterion" which states that an observation should
be discarded if the probability of its occurrence in the set of
observations is equal to or less than 1/(2K), where K is the
number of observations. The table below, assuming a Gaussian dis-
tribution, gives the maximum acceptable departure of any one
reading from the mean in units of o:

Number of Observations Maximum Departure Acceptable in Units of Standard Deviation
5 1.65
i0 1.96
20 2.24
50 2.58
100 2.81
200 3.02
500 3.29
1000 3.48

Interested students may find it instructive to investigate
the Poisson distribution, which, when its mean is large, has the
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shape of the Gaussian distribution. The ideal Poisson distribution
has the peculiar property that, regardless of the magnitude of the
mean, the standard deviation is equ=l to the square root of the
mean of the distribution of wvalues.

Instructions for Using the Computer Program "GAUS"

(1) Make repeated measurements of some physical quantity according
to whatever instructions you have been given for the particular

laboratory session. Take care to record the values obtained in the
order you obtain them. T

{2) Punch into standard IBM data cards the values you obtained:

a. Separate different values by one or more blank positions
on the carad.

b. Punch decimal points only for values with a decimal
fraction part.

c. Punch as many values on one card as you can, then con-
tinue on another card.

d. Do not split a given value between two cards.

e. Punch errors may be "erased" by overpunching each column
of the given value with an X, if column one is blank.

f. After your last value, enter "9999"™ in your data card,
no decimal point!

(3) Make up a data deck as follows using pre-punched cards if they
are supplied; ctherwise, punch your own additional cards as needed.
The symbel "b" does not stand foxr the letter "B" punched on a data
card; it stands for a blank column with no hole punched in it.
Blank columns so designated must be przsent. The initial "//" must
be in columns one and two of the cards.

Here is how your deck of cards should look (top line represents top
card) :
//bJIOBbT
//bXEQbGAUS
A card with your name or identifying nwiber punched.
Your data cards--in order--as prepared under (2);
be sure you enter 9999 after your last value.
//b*bJOBbEND

(4) Submit your program; or run it yourself, if so instructed.

Output from GAUS

The first printed line is your identification card.

Values rejected according to the Chauvenet Criterion are noted
next; one or more values may be rejected at a time. After each
such occasion of rejection the remaining list is again checked to
see if any values in it should be rejected according to Chauvenet's
Criterion. Any value that is exactly zero is automatically reject-
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ed, as it is likely to be due to a keypunch or card reading error.
You may enter values arbitrarily close to zero, however; e.gq.,
0.0001 is permitted.

Next, the values remaining are printed out in the original
order on the left, along with three additional columns: the "Run-
ning Averagde," "Running Sigma," and "Running Sigma of Ave.” The
"Running Average" is the average of the value to its left plus all
preceding values in the first column; the "Running Sigma" is’ the
standard deviation of those values; "Running Sigma of Ave.” is an
estimate of how confident you can be in the value of the "Running
Average” value just to its left. It is, in effect, a prediction
of the standard deviation you might expect to get upon making a
list of average values obtained in a manner exactly as the one to
its left was obtained. That is, if the average value, X, of a
collection of data, x, (statistics) is itself considered as a new
statistic, the theory of probability predicts that a collection of
average values derived from data samples of M different measure-
ments will have a standard deviation ¢, related to the deviation
gy of a single m¢asurement by

Ox = oy /YM

The last values in these "Running” lists apply to the full list
given, except for those values rejected.

The full list is next divided up into successive subsets to
illustrate the way in which the average and standard deviation of
successive subsets fluctuates about the average and standard de-
viation applicable to the full list. Compare these values to the
last entries under "Running Average" and "Running Sigma".

The list of subset averages is now considered as a new list
of values for which the average and standard deviation is computed.
The same is done for the list of the standard deviations of the
subsets, which may, in turn, be considered a statistic and assigned
an average, ¢, and a standard deviation, Ogy .

The first value under "Their Sigma,"” which represents the
standard deviation of the list of averages of subsets, should be
compared with the M-th entry under "Running Sigma of Ave." above,
where M = the number of values in each subset of values. These
two values should be within 10 to 20 percent of each other if your
list of values has a true Gaussian shape.

Your list of values is again printed out, but this time or-
dered according to value; also listed is the departure of each
value from the mean value, i.e., the last value in the list "Run-
ning Average."

Next, a histogram is printed out along with an indication of
the interval of values included in each histogram bar. This is
followed by a numerical comparison of the observed histogram with
the expected. "CHI2" heads the list of contributions to the chi-
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squared sum. "Lower" and "Upper" are bounds on the histogram bars
in terms of departures from the mean. If the data is distributed
according to a Gaussian distribution, then theory tells us that
the value of x2 for data selected at random will be less than
the number of histogram bars at least 50% of the time, the exact
figure depending upon the exact number of bars. Thus, as a rule-
of-thumb, 1f ¥ is significantly larger than the number of his-
togram bars, we would have reason to question the validity of the
Gaussian distribution as applied to that paxrticular set of data.
(Incidentally, regrouping the data to make more or less bars also
affects the value of x2 accordingly--you can't beat the system!)




TEACHER'S GUIDE

Approximately 280 students have used GAUS over the past three
and a half years. These have been students of high school age in
summer NSF science programs as well as students in our introductory
physics courses. The student response has been generally quite
good, with a significant number of students showing genuine enthu-
siasm.

A variety of measurement procedures have been used to generate
data for GAUS:

1. Repeated measurements of the period of a simple tor-
sional pendulum made by hanging a rod on magnetic
tape.

2. Repeated measurements of tranrsit time for a car on
an air track.

3. Radioactive decay counts--each student instructed to
set his counting equipment so as to get some assigned
average count rate, at least approximately, so the
class as a whole can check the prediction that stan-
dard deviations will go as the square root of the
mean values.

Class and/or laboratory discussion is directed to the useful-
ness of the standard deviation associated with measurement. 1In
particular this is related to the question of whether certain func-
tional relations describe the relationship between experimental
values to within a reasonable degree of accuracy. The utility of
the Gaussian distribution needs to be emphasized and illustrated
by actually making use of it in laboratory work.

In selecting an experimental procedure to generate data for
GAUS, the following considerations are important:

1. It should be possible to obtain about 100 indepen-
dent measurements/hour; GAUS can handle 200 readings
in its present form.

2. Repeated measurements should yield a significant
scatter of values over a continuous range--specific
values should rarely repeat. The histogram gener-
ated may look very strange if this condition is not
met.

3. Except as you desire it, there should be no trend
for the repeated measurements to lead to values
tending to steadily increase or decrease. Note:

12
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extended use of a stop watch can lead to fatigue
with increased response time and variance--this
rmight be interesting to study.

4. Avoid a change in "observer" in the middle of a
set of measurements, except as you wish students
to study possible effects of such changes, if any.

It has been possible at Coe College to have students go dir-
ectly from the laboratory to keypunches and then to the IBM 1130
where they could run their data "open-shop"”. While this does help
develop interest, there was also good student response even when
we had delays due to courier service to and from Iowa City. With
the IBM 1130 we store the program in "Core Image Format," so that
execution starts within about five seconds and runs one to three
minutes for typical sets of data used. Students are given the op-
tion of having their decks run for them closed-shop style if time
or inclination rules against the "hands-on" operation.

The following pages contain what it is hoped are self-explan-
atory listings of GAUS and its associated subroutines; followed
by an Appendix explaining the use of the subroutine for free-style

input.

b ik
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// * MODIF68 05

// DUP

*DELETE GAUS

// FOR

*TOCS (CARD, 1132 PRINTER)

*ONE WORD INTEGERS

GAUS USES SUBROUTIMES SUBSE, ORDE, COUNT, GEX, CHI, AND FREE
GAUS COGRDINATES THE USE OF SUBROUTINES ORDE, COUNT, GEX, AND
CHI TO MAKE AN ANALYSIS OF AN UNORDERED SET OF VALUES HAVING,
PRESUMABLY, A GAUSSIAN DISTRIBUTION. IT ACCEPTS THE K VALUES
IN THE VECTOR X (I} AND GENERATES THE FOLLOWING

AVE = THE AVEkLGE VALUE OF SET OF READINGS

S = THE STANDARD DEVIATION OF THE SET OF READINGS

INTV= THE NUMBER OF INTERVALS SET UP TO MAKE HISTOGRAM BARS
QLX(I) = THE NUMBER OF VALUES IN VARIOUS HISTOGRAM BARS.

X(I) = THE READ IN VALUES IN GAUS, BUT COUNT FREQUENCY IN CHI
EX(I)= THE NUMBER OF VALUES EXPECTED IN THESE HISTOGRAM BARS.
DX (I) = THE DIFFEEENCE BETWEEN ACTUAL AND EXPECTED, 2 DIF. USES
DX2 (I)= THE SQURE OF DX (I)

CHI2 (I) = CONTRIBUTIONS TO THE CHI SQUARED CRITERION PARAMETER
QLB(I)= THE LOWER BOUNDS OF THE HISTOGRAM BAR INTERVALS

QUB(I)= THE UPPER BOUNDS TO THE HISTG:GRAM BAR INTERVALS

SX = THE SUM OF THE NUMBER OF VALUES IN THE HISTOGRAM BARS

SEX= THE SUM OF THE EXPECTED NUMBER OF VALUES IN THE VARIOUS BARS
SDX= THE SUM OF THE ABSOLUTE VALUES OF THE VALUES DX(I)

SDX2 = THE SUM OF THE VALUES DX2(I)

SCHI2= THE SUM OF THE VALUES CHI2(I), THE CHI SQUARED SUM

BY PAUL A. SMITH, COE COLLEGE, CEDAR RAPIDS, IOWA
PLEASE COMMUNICATE ANY DIFFICULTIES TO THE AUTHOR DIRECTLY

oo

DIMENSION X(200),DX(200),0LX(18),EX(18),DX2(18),CHI2(18),QLB(18),
. QUB(17),LX(17),TITLE (40)
1 FORMAT (40A2)
2 FORMAT (1H1,40A2)
5 READ(2,1) (TITLE(I},i=1,40)
WRITE(3,2) (TITLE(I),I=1,40)
K = 200
RIT = 0.0
CALL FREE (X, K)
C TEST TO BE SURE A SET OF VALUES WAS ACTUALLY READ IN
IF (K) 15,5,15
15 QK = K
SX = 0.0
DO 20 I = 1,K
20 SX = SX + X(I)
AVE = SX/0QK
SDX2 = 0.0
DO 40 I = 1,K
DX{I) = X(I) - AVE
40 SDX2 = SDX2 + DX(I)**2
S = SQRT (SDX2/QK)
C USE LEAST SQUARES FIT FUNCTION REPRESENTATION OF CHAUVENET CRITERION
C FUNCTION WHICH IS DEPENDENT ON THE NUMBER OF VALUES INVOLVED
CHAUV = S* (SORT (8.39+8.62*ALOG (QK)/2.30259)-2.08-0.111*AL0OG (QK) /
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12_.30259) 15

J=20
DO 50 ¥ = 1,K
REJECT ALL VALUES EXACTLY EQUAL TO ZERO AS THEY MAY BE KEYPUNCH OR READ
ERRORS AND WOULD NOT LIKELY BE REJECTED BY CONSIDERATIONS FOLLOWING
VALUES VERY CLOSE TO ZERO ARE PERMITTED, FOR EXAMPLE 0.0001
NEGATIVE VALUES ARE PERMITTED
IF (ABS (X{¥V)-0.0000001) 42,41,41
REJECT VALUES VERY FAR OUT ON TAILS OfF DISTRIBUT1iON
41 IF(CHAUV-ABS(DX(I))) 42,42,48
42 IF(RJT) 43,43,45

43 WRITE(3,44)
44 FORMAT ('0 SORRY, BUT THESE VALUES LOOK OUT OF PLACE AND SC ARE REJE

.CTED'///11X, 'VALUE'8X, 'AVERAGE'6X, 'DEVIATION PERMITTED DEV')
RJT = 1.0
45 WRITE(3,46) X(I),AVE,DX(I),CHAUV
46 FORMAT(' '4F15.4)
GO TO 50
48 J =3+ 1
DX(J) = DX(I)
50 CONTINUE
END OF EXTREME VALUE REJECTION LOOP
TEST TO SEE IF ANY VALUES REJECTED
IF (K~-J) 52,60,52
52 K=J
IF VALUES WERE REJECTED RECOMPUTE THE RAW SET OF VALUES
DO 55 I = 1,K
55 X(I) = DX(I) + AVE
SINGLE SPACE THE PRINTER
WRITE (3, 46)
IF VALUES WERE REJECTED RE-CHECK REMAINING LIST FOR EXTREME VALUES
GO TO 15
THE RAW SET OF VALUES HAS BEEN CLEANED AND WE HAVE AVERAGE AND STANDARD
DEVIATION
MAKE A STUDY OF RUNNING AVERAGE AND STANDARD DEVIATIONS AND
THEN FOR SUBSETS OF THE FULL SET COMPUTE AVERAGE AND STANDARD DEVIATIONS
60 CALL SUBSE (X,K)
PUT THE VALUES AND THEIR DEPARTURE FROM THE AVERAGE IN NUMERICAL ORDER
CALL ORDE (X, DX, K)
WRITE(3,62) (X(1), DX(I), I=1,J)
62 FORMAT(///'0 ORDERED VALUES DEV FROM AVE'//(' '2F15.4))
COUNT UP HOW MANY VALUES LANDED IN EACH OF CERTAIN HISTOGRAM BAR INTERVALS
CALIL COUNT (K,DX,SP,INTV,LX,QLB,QUB,AVE)
DO 70 I = 1,INTV
70 QLX(I) = LX(I)
COMPUTE THE EXPECTED GAUSSIAN DISTRIBUTION OF COUNTS FOR HISTOGRAM BARS
CALL GEX(INTV,K,EX,SP,S)
COMPUTE THE CHI SQUARE VALUE FOR OBSERVED VERSUS EXPECTED DISTRIBUTION
CALL CHI(INTV,QLX,EX,DX,DXZ,CHIZ,QLB,QUB,SX,SEX,SDX,SDXZ,SCHIZ,
1AVE, S)
PERMIT MULTIPLE SETS OF DATA
GO TO 5
WILL CALL EXIT ON ENCOUNTERING A // * MONITOR COMMENT CARD
END

// DUP
*STORE WS UA GAUS
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SUBROUTINE SUBSE (X,K)
DIMENSION X (1)
MAKE STUDY OF RULINING AVERAGE AND STANDARD DEVIATION OF SET OF VALUES
DC NOT MAKE STUDY ON A SET OF LESS THAN 9 VALUES
IF(X-9) 5,10,10
5 RETURN

10 WRITE(3,20) X(1),X(1)

20 FORMAT('Q OUTPUT FROM SUBROUTINE SUBSET'/'0'9X‘VALUES',3(8X'RUNNING
.13 /6%,1AS READ T1i'8X, 'AVERAGE'10X,'SIGMA',3X,'SIGMA OF AVE'/'0'2Fl
.5.4)

SUM = X(1)

SUM2 = X(1)**2

COMPUTE RUNNING AVERAGE AND STANDARD DEVIATION FOR SET OF VALUES
DO 100 I = 2,K

SUM = SUM + X(I)

SUM2 = SUM2 + X(I)**2

AVE = AVERAGE OF SET OF VALUES INCLUDED UP TO THIS POINT
SDS = STANDARD DEVIATION OF THE SET

SDA = STANDARD DEVIATION OF THE AVERAGE

AVE = SUM/FLOAT(I)

8PS = SORT{(SUM2-FLOAT (I) *AVE**2) /FLOAT (I-1))

SDA = SQRT( (SUM2-FLOAT (I)*AVE**2)/FLOAT (I*(I-1)))

WRITE (3,30) X(I),AVE,SDS,SDA
30 FORMAT (' '4F15.4)
100 CONTINUE
WRITE (3,101) K
101 FORMAT('0 THERE WERE 'I3,' VALUES IN THE FULL CLEAN SET')
PREPARE TO MAKE A STUDY OF SUBSETS CF THE FULL SET OF VALUES
NCT ALL VALUES CAN BE USED IN STUDY OF SUBSETS, SEEK TO WASTE AS FEW

AS IS POSSIBLE
COMPUTE APPROPRIATE SIZE OF SUBSETS TO WASTE LEAST NUMBER OF VALUES

NGK = NUMBER OF GROUPS KEEP

KQ = NUMBER OF VALUES WASTED IN BEST CHOICE CF NG TC T°ATE

N = NUMBER OF VALUES TO BE GROUPED IS EQUAL TO NUMBER IN LIST

NS = SQUARE ROOT OF NUMBER OF VALUES, ROUGH ESTIMATE OF NUMBER GROUPS
NI = NUMBER OF VALUES EACH SIDE OF NS TO BE CONSIDERED

NX = MAXIMUM VALUE TO BE CONSIDERED IN CONSIDERING NUMBER OF GROUPS
NG = THE NUMBER OF GROUPS CURRENTLY BEING CONTEMPLATED

NGK = 0

KG = 1000

N =K

NS = SQRT (FLOAT (N))

NI = (FLOAT(N))**0.25

NX = NS + NI

DO 105 NG = NS,NX

CHECK TO SEE HOW MANY VALUES WOULD BE WASTED WITH CURRENT NG

IF (IABS (N- (N/NG) *NG)-KQ) 104,104,105

STORE CURRENT BETTER THAN ANY FORMER VALUE OF NG WITH ASSOCIATED KQ
104 NGK = NG

KQ = IABS (N-(N/NG)*NG)
105 CONTINUE

NR = NUMBER OF READINGS PER GROUP

NU = NUMBER OF VALUES USED

SUM = SUM OF INDIVIDUAL VALUES IN SUBSET

SUM2 = SUM OF SQUARES OF INDIVIDUAL VALUES IN SUBSET

GSUM GRAND SUM OF SUBSET AVERAGES

Fohd¥ L0kt s It wrbh war man alelh w
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GSUM2 = GRAND SUM OF SUBSET AVERAGES SQUARED
ZSUM = SUM OF STANDARD DEVIATIONS OF INDIVIDUAL SUBSETS
ZSUM2 = SUM OF SQUARES OF STANDARD DEVIATIONS OF SUBSETS
NG = NUMBER IN SUBSET GROUP
NG = NGK
NR = N/NG :
WRITE (3,106) NG,NR :
106 FORMAT(//*0 BREAK UF VALUES INTO'I3,' SUBSETS OF 'I3,' VALUES EACH') :
NU = NR*NG
c SIZE OF GROUP SUBSET COMPUGTATION COMPLETED
C COMPUTE AVERAGE AND STANDARD DEVIATION FOR THE VARIOUS SUBSETS OF VALUES
SGM = 0
SUM2 = 0
GSUM = 0
0

aaaan

GSUM2 = 0
ZSUM = i
ZSUM2 = 0 ;
NG =0 ;
WRITE (3,110)
110 FORMAT ('0'5X, 'SUBSET AVE'21X,'ITS SIGMA'/' ')
C MAKE STUDY OF SUBSETS
DO 200 I = 1,K
SUM = SUM + X(I)
SUM2 = SUM2 + X(I)**2
IF (I-NR* (I/NR)) 200,120,200
NOTE I(MOD NR) HERE
COMPLEAT COMPUTATIONS FOR THE GIVEN SUBSET
120 AVE = SUM/FLOAT (NR)
SDS = SOQORT ( (SUM2-FLOAT (NR) *AVE**2) / (NR~1))
GSUM = GSUM + AVE
ZSUM = ZSUM + SDS
GSUM2 = GSUM2 + AVE**2
ZSUM2 = ZSUM2 -+ SDS**2
WRITE(3,150) AVE,SDS
150 FORMAT(' 'F15.4,15X,F15.4)
NG=NG+1
Cc HAS FULL SET OF SUBSETS BEEN CONSIDERED
IF (I-NU) 180,210,180
C ZERO ACCUMULATORS FOR SUMS OF VALUES ASSOCIATED WITH SUBSETS
180 SUM = 0
SUM2 = 0
200 CONTINUE
210 WRITE(3,211)
211 FORMAT(///5X'AVE OF AVES THEIR SIGMA AVE OF SIGMAS THEIR SI
.GMAI/I l)
C COMPUTE GRAND AVERAGES AND STANDARD DEVIATIONS
C G MEANS GRAND, Z MEANS STANDARD DEVIATION IN FOLLOWING FOUR NAMES
GAVE = GSUM/FLOAT (NG)
ZAVE = ZSUM/FLOAT (NG)
GAVEZ = SQRT ( (GSUM2-FLOAT (NG) *GAVE**2) / (NG-1) )
ZAVEZ = SQRT ( (ZSUM2-FLOAT (NG) *ZAVE**2) / (NG-1))
WRITE (3,30) GAVE,GAVEZ,ZAVE,ZAVEZ
RETURN
END
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SUBRCUTINE ORDE/(X,Y,K)
PUTS THE TWO COLUMN VECTORS X(I) AND Y(I) IN ORDER ACCORDING TO TBE

C
C VALUES IN X(I). THE PAIR X(J) AND Y(J) ARE KEPT TOGETHER IN ORDERING.
C YHE SMALLEST X(I) IS PUT IN X(1)
DIMENSION X(1),Y(1)
C CHECK EVERY ELEMENT
30 DO 50 J = 1,K
C NOTE LOWER AS INITIAI, SMALLEST ELEMENT
L=J
C CHECK EACH ELEMENT HIGHER THAN THE FIRST
56 40 I = J,K
C IF THE LOWER IS .LE. THE HIGHER ONE ALL O.K.
IF(X(L)-X(I)) 40,40,35
C IF HIGHER ELEMENT SMALLER THAN LOWER ONE, NOTE THIS
35 L=1I
C 1, IS KEPT THE INDEX OF THE SMALLEST ELEMENT EXAMINED
40 CONTINUE
C ON EXIT FROM DO LOOP L IS INDEX OF SMALLEST ELEMENT
C TEMPORARILY STORE VALUES OF LOWEST ELEMENT STUDIED
TX = X(J)
TY = Y(J)
C TRANSFER SMALLEST ELEMENT TO LOWEST POSITION STUDIED
X(J) = X(L)
Y(J) = Y(L)
C PLACE TEMPORARY VALUE IN PLACE OF SMALLEST VALUE
X(L) = TX
50 Y(L) = TY
RETURN

END

RN et A
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SUBROUTINE COUNT (L, DX, SP,X,LX,QLB,QUB,AVE)

THIS SUBROUTINE ACCEPTS I VALUES DX{I). A HISTOGRAM ANALYSIS
IS MADE BY SETTING UP K INTERVALS OF WIDTH SP WHICH SPAN THE
SET OF VALUES INCLUDED IN DX(I), HAVING UPPER AND LOWER BOUNDS
STORED IN QUB(I), AND QLB(I). THE NUMBER OF VALUES DX(I) WHICH ARE
FOUND TO FALL IN THE VARIOUS INTERVALS ARE STORED IN LX(I).

A HISTCGRAM OF LX(I) IS INCLUDED USING ****XXXkkkkkkx

THE NUMBER OF HISTOGRAM BARS IS AN CDD NUMBER JUST LESS THAN THE
SQUARE ROOT OF THE NUMBER OF VALUES IN THE LIST

INTEGER STAR, BLANK

DIMENSION DX (1) ,LX(1),QLB(1),QUB(1),ID(30)

BLANK = 16448

STAR = 23644

QL = L

K = SQRT{QL) -~ 0.5

IF (K- (X/2)*2) 4,2,4

K=K-1

IF (K-3) 6,6,8
K=3

QK = K

po 19 I = 1,K
LX(I) = 0

SP = 1.0001* (DX(L)-DX(1))/QK

AM = DX (1) + (DX(L) - DX(1))/2.0
DO 20 I = 1,K

QI = I - K/2 - 1

po 18 J=1,L

QLB(I) = (QI-.5)*Sp + AM

QUB(I) = (QI+.5)*Sp + AM
IF(DX(J)-QLB(I)) 18,18,14

IF (DX(J)~-QUB(I)) 16,16,18 3
ILX{(I) = ILX(I) + 1 j
CONTINUE

CONTINUE

po251=1,30

ID(I) = I

WRITE (3, 31)

FORMAT (///'0' 4X, 'LOWER BOUND'4X, 'UPPER BOUND HISTOGRAM BARS'/' ')
DO 60 I = 1,K

LXU = LX(I)

QLB(I) = QLB(I) + AVE

QUB(I) = QUB(I) + AVE

IF (LXU-90) 37,37,36

FORMAT (' ',2F14.4,90Al1)

LXU = 90

WRITE(3,35) QLB(I),QUB(I)

IF (LXU) 55,55,50

WRITE(3,100) (STAR,L = 1,LXU)

QLB(I) = QLB(I) - AVE

QUB(I) = QUB(I) - AVE

FORMAT ('+',22X,90A1)

RETURN

END
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SUBROUTINE CHI(K, X,EX,D¥,DX2,CHiI2,QLB,CUB,SX,SEX,SDX,S5DX2,SCHI2,
1AVE, S)

C CHI IS USED IN CONJUNCTION WITH SUBROUTINE GAUS. SEE THE LATTER
C FOR THE SIGNIFICANCE OF THE VARIABLES IN CHI. SUBROUTINE CHI
C ACCEPTS K VALUES OF X(I) AND EX(I), NCRHMALIZES THE VALUES OF
C EX(I) SO THAT THE SUM OF THEIR VALUES IS EQUAL TO THE SUM OF THE
C VALUES OF X(I), THEN CALCULATES THE VALUES OF SEX,f5DX,SDX2,SCHI2
DIMENSION X{1),DX(1),EX(1),DX2(1),CHI2(1},QLB(1),QUB(1)
SX = 0.0
; SEX = 0.0
; DO 10 I = 1,K
i SX = SX + X(I)
i 10 SEX = SEX + EX(I)
; DO 15 I = 1,K
; 15 EX(I) = (SX/SEX)*EX(I)
; SEX = 0.0
g SDX = 0.0
; SDX2 = 0.0
: SCHI2 = 0.0
§ DO 30 I = 1,K

SEX = SEX + EX(I)
DX(I) = EX(I) - X(I)
IF(ABS (DX(I))-1.0E-15) 25,26,26
25 DX(I) = 1.0E-15%
26 SDX = SDX + ABS(DX(I))
DX2 (I) = DX(I)**2
SDX2 = SDX2 + X2 (I)
IF (EX(I)-1.0E-15) 27,28,28
27 EX(I) = 1.0E-15
28 CHI2(f) = DX2(I)/EX(I)
30 SCHI2 = SCHI2 + CHI2(I)
QK = K
WRITE (3,100) (X(I),EX(I),DX(I),DX2{K),CHI2{I),QLB(I),QUB(I),I=1,K)
100 FORMAT(////' NOW LETS LOOK AT THE EXPECTED HISTOGRAM'//'0 COUNT E
.XPECT DIF DIF2 CHI2 LOWER UPPER'//(' '7F7.2))
WRITE (3,120) SX,SEX,SDX,SDX2,SCHI2
120 FORMAT('0'7F7.2)
WRITE (3,130)
130 FORMAT('0 THE LAST LINE OF VALUES GIVES SUMS CF VALUES IN COLUMNS')
RETURN
END

S e o o
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SUBROUTINE GEX(X,L,EX,SP,S)
THERE ARE L VALUES HAVING A GAUSSIAN DISTRIBUTION WHICH HAVE
BEEN FCUND TO FALL IN K INTERVALS OF WIDTH SP. THE VALUE OF
K IS AN ODD INTEGER. THE STANDARD DEVIATION OF THE I VALUES IS
THE NUMBER S. THIS SUBROUTINE CALCULATES THE VALUES OF EX(I)
WHICH ARE PROPORTIONAL TO THE NUMBER OF VALUES EXPECTED TO FALL IN
EACH INTERVAL OF WIDTH SP. NOTE THAT THE SUM OF THE EX(I) IS NOT
EQUAL TO THE VALUE OF 1. BECAUSE THE EXPECTED GAUSSIAN DISTRIBUTION
EXTENDS BEYOND THE RANGE COVERED BY THE K INTERVALS OF WIDTH SP
DIMENSION EX(1)
QL = L
DO 50 I = 1,K
QI = I - K/2 -1
IF (K-{K/2)*2) 15,14,15

14 QT = QI + 0.5

e NeNeNeNe Ne!

15 stM = 0
DO 40 J = 1,10
QF =J
QJF = QJ*0.1

4) SUM = SUM + EXP (- ((QI-.5+QJ-0.05)*SP)**2/(2,*%S**2))
50 EX(I) = (QL/S/2.5066)*SUM* (SP/10.0)

RETURN

END

Sample Data Deck for GAUS

// XEQ GAUS

DICK ROWE TORSION PENDULUM PART II

22,2 22,1 22.2 21.9 22.2 21.8 22.0 22.0 22.3 21.9 22.0 22.0 21.8 22.2
22.4 22.4 22,7 22.2 21.5 22.4 21.8 2.1 21.8 22.0 22.0 22.4 21.8 22.2
22,1 22,2 21.7 22.2 22.2 22,2 22,3 22,5 21.6 22.6 22.1 22.0 21.9 21.8
22.0 21.6 22.3 22,5 22.3 22.0 22.3 22,2 9999
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APPENDIX

Format-Free Input

When one is working with students of little or no previous
experience in using a digital computer, one of the major problems
encountered is that of their properly entering data on punched
cards. This is true both in the case where the computer program
is written for the student by the instructor and the case where
students write their own programs for simple data analysis. Even
for experienced programmers, entering data on cards according to a
specified FORMAT can be a sericus nuisance. The Coe College FREE
STYLE input programs are designed to remove this barrier to easy
use of the digital computer; it can easily make the difference
between success and total failure in introducing digital computing
into instructional activities.

The basic premise of the system is that a student should be
able to punch into data cards, in proper sequence, the numbers to
be entered into the computer with practically no further restric-
tions. In general, any recognizable number is legal. In particu-

lar: .

1. Numbers may be placed anywhere on a card or cards
just so long as: a) one or more blanks separate
different numbers; b) all of each number is on
just one card; and c) numbers from two different
"batches” do not appear on the same card.

2. Numbers are read in "batches" of one or more val-
ues. Each "batch" corresponds to the execution
of a statement of the form CALL FREE(X,NV). This
causes up to NV values to be read into the loca-
tions X(1), X(2), X(3), . . ., X(NV). Successive
cards are searched for numbers until one of the
following happens: a) NV values have been read
in--RETURN tc calling program; b) 9959 encounter-
ed on a data card--NV is set equal to the number
of values previously read in--RETURN to calling
program--"9999" thus means "end of batch"” when NV
is set big; c¢) // found in columns one and two--
monitor trap.

ol Lehaatils a0y s Mk Al "

3. Numbers may contain: a) up to 8 digits; b) alge~-
braic signs may be used freely--the "+" sign is
optional; c) a decimal point--optional for inte-
ger values; d) a properly positioned "E" in an
exponential constant, provided there is no blank
space before the "E" and it is followed by an ex-
plicit "+" or "-" sign (for example, 0.317E-8).
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4. Illegal characters are treated as blanks, if col-
umn one of the card is blank. This permits the
Ffollowing: a) entries on data cards of the form
A = 5.6 so the student may remind himself of the
meaning of the number; b) erasure of keypunch
errors by overpunching all of the number in gues-
tion with X's (this greatly speeds up novice use
of an electric keypunch and permits ready use of
manual inexpensi e ones in laboratory situations);
c) insertion of pure comment cards and blank cards
in the data deck for identification and reminder

purposes.

5. Comment cards with a "C" in column one are not
examined for numerical values; instead they are
printed out on the printer with carriage control
according to the content of column two. This
permits batched data decks with pagination and
student name header printed at the top of his
printed output.

The card reading by these programs is slow but very useful
with limited amounts of data. Efforts will be made to write fas-
ter versions--both with only FORTRAN and also taking advantage of
the IDEAL subroutines available on the IBM 1130 which permit a
faster search and overlapped £/0.

The following pages contain listings of FREE and associated
programs from the FREE STYLE package, as well as a flow chart for
FREE, which is the fundamental subroutine. In the flow chart,
literals such as "+" within a diamond (decision symbol) indicate

a test as to whether the column under consideration contains that
symbol. The symbol "b" stands for a blank column.
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// * MODIF68 12
// DUP
*DELETE FREE
// FOR
*ONE WORD INTEGERS

SUBROUTINE FREE (X,NV)

DIMENSION X(1),NA(80),PT(10)

FREE STYLE CARD READER

CALL FREE(X,NV) WILL READ UP TO NV VALUES INTO X(1) . . . X(NV)

THE FIRST ARGUMENT OF THE CALL STATEMENT MUST BE A SINGLY SUBSCRIPTED REAL
VARIABLE

THE SECOND ARGUMENT OF THE CALL STATEMENT MUST BE AN INTEGER VARIABLE
PUNCH VALUES ANYWHERE ON CARD BUT SEPARATE THEM WITH ONE CR MORE BLANKS
VALUES MAY HAVE UP TO EIGHT INTEGER DIGITS PUNCHED TO DESIGNATE THEM
DECIMAL POINTS ARE HONORED WHERE PUNCHED BUT ARE OPTIONAL

VALUES ARE READ OFF CARDS IN ORDER RUNNING FROM LEFT TO RIGHT ON
SUCCESSIVE CARDS UNTIL NV VALUES FOUND OR 9999 FOUND

YOU MAY PUT AS MANY OR AS FEW VALUES ON EACH CARD AS DESIRED

FOUR NINES STANDING ALONE ON CARD SERVE AS SIGN OF END OF VALUES

IF 9999 IS ENCOUNTERED NV IS SET TO THE NUMBER OF VALUES PREVIOUSLY READ
TO ENTER THE VALUE 9999 INTC THE COMPUTER ENTER IT AS 9999.

WITH NV = 4 CALL FREE(X,NV) WOULD READ 1 2 3 4 OFF NEXT CARD, LOSE 5 6 7
1234567
WITH NV = 10 CALL FREE(X,NV) WOULD READ 1 2 3 4 5 OFF NEXT CARD AND SET
NV = 5 BEFORE RETURN FROM THE CALL
1234559396789

LEGAL CHARACTERS ARE 0123456789 .E+-

THERE MUST BE NO BLANK BEFORE THE E AND THERE MUST BE A + OR ~ AFTER

E TYPE NUMBERS ARE HONORED IN FOLLOWING FORMS 12.0E+2 4.5E-2

LEGAL VALUES 2 4 5 +23 -24 -23. -.02 +.03 12E+3 -4.5E-23 1E+.01 45632578
ILLEGAL VALUES 2.13.52.45.6 23.4E 3 23.8 E+35 9999 (EXCEPT AS END) :
ILLEGAL VALUES 23E05 E+03 456328754 45.2547865 +36-25+47+89 0.00000005 ;

CARDS HAVING COLUMN ONE BIANK WILL HAVE ALL ILLEGAL CHARACTERS REMOVED
BEFORE THE NUMBERS ARE READ OFF IT

DATA CARDS WITH ANY PUNCH IN COLUMN ONE EXCEPT C WILL BE READ WITHOUT ANY
CHECKING FOR ILLEGAL CHARACTERS

THANKS TO ERASURE FEATURE MISPUNCHED CHARACTERS MAY BE 'X-ED' OUT ON CARD
THIS MAKES IT PRACTICAL TO USE MANUAL CARD PUNCHES IN THE LABORATORY

NOTE THAT COLUMN ONE MUST BE BLANK FOR ERASURE FEATURE TO OPERATE
ERASURE OF ILLEGAL CHARACTERS PERMITS DATA CARDS AS THOSE FOLLOWING
HERE CONSIDER COLUMN 7 TO BE COLUMN 1 OF A REAL DATA CARD
A=2.3B=5.6C= 4.2 ON FIRST EXPERIMENT 9999

FOLLOWING ARE THE TIMES 4 7 9 12 14 16 18 20 9999

FOLLOWING ARF THE DISTANCES 5 6 7 $ 10 13 45 9999
DDATA BY NANCY PHYSICIST ON AUGUST TENTH (DON'T PUT DIGIT FOR DATE)
THIS FEATURE WILL HELP NOVICES KEEP TRACK OF WHAT THE VALUES REPKESENT

e NN Rr N e NN Ee Ko Ne e Re R e Re R e N e e R e Neie e R Ne e e Ko K e Ko X e Ko Ko Ko Ko Ko Ko Ko e Ko Ko K e

A 'C' IN COLUMN ONE OF A DATA CARD READ BY 'FREE' WILL BE PRINTED ON
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c THE PRINTER BUT OTHERWiISE WILL BE IGNORED
C THE FEATURE OF A 'C' IN COLUMN ONE PERMITS FRINT-QUT TC RBE IDENTIFIED
C FOR LABORATORY DATA REDUCTION JOBS HAVING MANY SETS OF DATA FOR ONE RUN
C
C CARDS ARE READ AT BETWEEN 60 AND 120 CARDS PER MINUTE DEPENDING ON CONTENT
C
NCP =1 ,
c NCP = INCREMENT OF COLUMN COUNTER. SET NCP = 2 FOR ALTERNATE COLUMNS
NVR = 1 .
. C NVR = NUMBER OF VALUES READ IN
PT(1l) = 1
C PT(I) = POWERS OF TEN = 10** (I-1)
DO 10 NC = 2,10
- 10 PT(NC) = PT(NC-1)*10
‘ ™Nopx = 1
c NOPX = NUMBER OF OPERATION IN MULTIPLICATION CF ENTRY VALUES
C NOPX = 1 MEANS NO OPERATION NOPX = 2 MEANS MULTIPLY BY POWER OF TEN
20 READ(2,32) NA
NANC = NA(1)
IF (NANC+15552) 40,30,40
C DATA CARD WITH 'C' IN COLUMN ONE IS PRINTED ON PRINTER
C 'C' CARDS HAVE CARRIAGE CONTROL ON COLUMN 2
C USE 'Cl' TO GO TO TOP OF PAGE, 'CO' FOR DOUBLE SPACE., 'C ' FOR SINGLE
30 WRITE{3,32) NA(2);Na
32 FORMAT (81A1)
GO TO 20
C TO CUT STORAGE DEMANDS PUT A GO TO 70 STATEMENT AT 40 AND CUT FOLLOWING

40 IF(NANC-16448) 70,45,70
[ 45 DO 68 NC = 2,80

NANC = NA (NC)

IF (NANC-16448) 50,68,50

C CHECK TO SEE IF CHARACTER IS A LETTER
50 IF(NANC+5824) 56,56,51
C CHECK TO SEE IF CHARACTER IS AN INTEGER
51 IF(NANC) 68,52,52
C CHECK TC SEE IF CHARACTER IS A '-'
52 IF(NANC-24640) 53,68,53
C CHECK TO SEE IF THE CHARACTER IS A '.'
53 IF(NANC-19264) 54,68,54
C CHECK TO SEE IF THE CHARACTER IS AN IBM 026 '+'
54 IF (NANC-20544) 55,68,55
C CHECK TO SEE IF THE CHARACTER iS AN IBM 029 '+'
55 IF(NANC-20032) 56,60,56
C CHECK TO SEE IF THE CHARACTER IS AN 'E’'
56 IF(NANC+15040) 61,57,61
C THE 'E' TYPE NUMBERS MUST HAVE A '+' OR '-' FOLLOW THE 'E'
C CHECK TO SEE IF THE 'E' IS FOLLOWED BY '-' OR '+' OR EITHER TYPE

57 IF(NA(NC+1)-20544) 58,68,58
58 IF(NA(NC+1)-20032) 59,68,59
59 IF(NA(NC+1)-24640) 61,68,61
60 NA(NC) = 20544

GO TO 68
61 NA(NC) = 16448

68 CONTINUE
L

Y
-
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NC =0
NC = NUMBER OF COLUMN OF CARD BEING CONSIDERED
NC = NC + NCP

LOOK FOR FIRST CHARACTER OF NEXT VALUE
IF (NC-80) 90,90,20

NANC = NA(NC)

IF (NANC-16448) 100,80,100

gg ; gUMBER OF DIGITS IN NUMBER CONSIDERED

ggg ; ;UMBER OF DECIMAL DIGITS OF NUMBER CONSIDERED

gggﬁ ; gNCREMENT OF NDD FOR COUNTING NUMBER OF DIGITS BEYOND '.'
g&iﬁ ; gNTEGER VALUE OF UP TO FIRST FOUR DIGITS OF NUMBER

gg%i% i gNTEGER VALUE OF DIGITS BEYOND FIRST FOUR DIGITS OF NUMBER
NC2 =

NC2 = NUMBER OF COLUMNS BEYOND FOURTH DIGIT OF NUMBER
NC2 AND NDD ARE AUGMENTED BY ONE FOR USE IN PT(I)
NOPXL = NOPX

NOPX = 1
NOPXIL = VALUE OF NOPX LAST TIME X(I) HAD VALUE STORED IN IT
NSG = +1

CHECK FOR ALGEBRAIC SIGN OF VALUE
IF (NANC-24640) 130,120,130

NSG = -NSG

GO TO 200

CHECK FOR BOTH CODES FOR '+'

IF (NANC-20544) 190,200,190

IF (NANC-20032) 220,200,220

NC = NC + NCP

IF (NC-80) 202,202,340

NANC = NA(NC)

CHECK FOR DECIMAL POINT

IF (NANC-19264) 240,230,240

NDDF = 1

GO TO 200

CHECK FOR 'E'

IF (NANC+15040) 260,320,260

END OF A VALUE ON DATA CARDS INDICATED BY PRESENCE OF A BLANK
CHECK FOR DELIMITER BLANK

IF (NANC-16448) 270,340,270

NANC MUST REPRESENT AN INTEGER IF IT REACHES STATEMENT 270
FIND THE INTEGER VALUE OF THE CHARACTER IN COLUMN NC

THIS PROCEDURE SPECIFIC TO IBM 1130 CHARACTER CODE
ANOTHER ROUTINE HERE MAY BE SUBSTITUTED FOR ANOTHER CHARACTER CODE
I = (NANC+4032)/256

COUNT NUMBER OF DIGITS AND DECIMAL DIGITS

ND = ND + 1

NDD = NDD + NDDF

IF (ND-5) 275,285,285

NVAL = NVAL*10 + I

GO TO 200

NVAL2 = NVAL2*10 + I
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NC2 = NC2 + I
GO TO 209
32C NOPX =
340 X(NVR) = ((NVAL*PT(NC2) + NVAL2)/PT(NDD) ) *NSG
NVR = NUMBER OF VALUES READ IN OFF CARD
IF THERE WAS AN 'E' DELIMITER ON LAST VALUE MULTIPLY BY POWER OF TEN
FRACTIONAL, POWERS PERMITTED HERE
21.3E4+0.5 IS A LEGAL DATA VALUE FOR 'FREE'
GO TO(360, 350) ,NOPXL
- 350 X(NVR-1) = X(NVR-1)*10.0**Y (NVR)
NVR = NVR -1
360 GO TO(410,480) ,NOPX
410 IF(NDDF) 440,430,440
FOUR NINES IN A ROW WITHOUT DECIMAL POINT INDICATE END OF STRING OF VALUES
430 IF(NVAL-9999) 440,459,440
READ ONLY UP TO °'NV' VALUES
440 IF(NVR-NV) 480,460,460
DO NOT RETURN THE VALUE 9999
450 X(NVR) = 0
CALL FREE WITH SECOND ARGUMENT A VARIABLE NEVER A CONSTANT
NOTE THAT HERE THE SECOND ARGUMENT HAS ITS VALUE CHANGED
NV ON RETURN IS THE NUMBER OF VALUES ACTUALLY READ IN BEFORE 9999
NV =NVR -1
460 RETURN
480 NVR = NVR + 1
GO TO 80
END
// DUP
*STORE WS UA FREE

aaQann

a0 o QO A
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(A Program to Input Parallel Column Vectors)

SUBROUTINE FREXY (X,Y,NV)

READS UP TG NV VALUES OF X(I) AND Y(I) IN SEQUENCE END BY 9999

SEE DOCUMENTATION ON FREE

IN CALLING PROGRAM X MUST BE DIMENSIONED IN EXCESS OF 2*NV

IF DIMENSION X(2*K),¥(K) YOU MAY EQUIVALENCE X(K+1) AND Y(1) TO SAVE CORE
DIMENSION X(2),Y(1)

THE DIMENSION STATEMENT MERELY DECLARES THESE TO BE SU:SCRIPTED VARIABLES
NV = NV*2

CALL FREE(X,NV)

NV = NV/2

IM=NV-1

IN CASE ONLY ONE PAIR OF VALUES READ IN

(1) = X(2)

IF(IM) 500,500,20

SHIFT EVEN NUMBEKED LOCATICONS UP AND ODD NUMBERED LOCATIONS TO BOTTOM
DC 100 I = 1,IM

I2 = 2*

I2p = 12 + 1

FOR EACH EVEN NUMBERED LOCATION SHIFT NEXT ODD ONE OUT TO TEMP FIRST
THEN SHIFT ALL ORIGINAL EVEN LOCATIONS BELOW IT UP OME LOCATION

TEMP = X{I2P)

DO 80 J=1,1I

K=1I2Pp - J

X(K+1) = X(K)

CONTINUE

PUT THE ODD LOCATION IN PLACE MADE AT BOTTOM OF EVEN LOCATION STRING
X(I+1l) = TEMP

CONTINUE

PUT ALL EVEN LOCATIONS INTO THE Y COLUMN VECTOR

DO 200 N = 1,NV

K=NV+ N

Y(N) = X(K)

RETURN

END
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Subroutines That Complement Free
By Facilitating Reading In Unscripted Values %
T
SUBROUTINE RD1(A) SUBROUTINE IRD1 (NA)
DIMENSION X (1) DIMENSION X(1)
NV =1 NV =1
CALL FREE (X,NV) CALL FREE (X,NV)
A = X(1) NA = X(1) +0.0001 :
RETURN RETURN ]
END END ]
SUBROUTINE RD2 (A, B) SUBROUTINE IRD2 (NA,NB)
DIMENSION X (2) DIMENSION X (2)
NV = 2 NV = 2
CALL FREE (X,NV) CALL FREE (X,NV)
A = X(1) NA = X(1) +0.0001
B = X(2) NB = X(2) +0.0001
RETURN RETURN
END END
SUBROUTINE RD3(A,B,C) SUBROUTINE IRD3(NA,NB,NC)
DIMENSION X (3} DIMENSION X(3)
NV = 3 NV = 3
CALL FREE (X,NV) CALL FREE (X,NV)
A = X(1) NA = X(1) +0.0001
B = X(2) NB = X(2) +0.0001
C = X(3) NC = X(3) +0.0001
RETURN RETURN

END END
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(Sample Print-Cut From "GAUS")

DICK ROWE TORSION PENDULUM PART II
OUTPUT FROM SUBROUTINE SUBSET
VALUES RUNNING RUNNING RUNNING
A5 READ IN AVERAGE SIGMA  SIGMA OF AVE
22.2000 22.2000
22.1000 22.1500 0.0704 0.0498
22.2000 22.1666 0.0596 0.0344
21.9000 22.0999 0.1419 0.0709
22.2000 22.1199 0.1305 0.0583
21.8000 22.0666 0.1757 0.0717
22.0000 22.0571 0.1622 C.0613+
22.0000 22.0499 0.1513 0.0535
22.3000 22.0777 0.164¢ 0.0548
21.9000 22.0599 0.1648 0.0521
22.0000 22.0545 0.1575 0.C475
22.0000 22.0499 0.1514 0.0437
21.8000 22.0307 0.1604 0.0445
22,2000 22.0428 0.1611 0.0430
22.4000 22.0666 0.180S 0.0467
22,4000 22.0874 0.1938 0.0484
22.7000 22.1235 0.2395 0.0580
22.2000 22.1277 0.2334 0.0550
21.5000 22.0947 0.2686 0.0616
22.4000 22.1099 0.2703 0.0604
21.8000 22.0952 0.2720 0.0593
22.1000 22.0954 0.2653 0.0565
21.8000 22.0825 0.2665 0.0555
22.0000 22.0791 0.2611 0.0533
22.0000 22.0759 0.2561 0.0512
22.4000 22.0884 0.2592 0.0508
21.8000 22.0777 0.2605 0.0501
22.2000 22.0821 0.2569 0.0485
22.1000 22.0827 0.2520 0.0468
22.2000 22.0866 0.2488 0.0454
21.7000 22.0741 0.2543 0.0456
22.2000 22.0781 0.2511 0.0444
22.2000 22.0817 0.2485 0.0432
22.2000 22.0852 0.2454 0.0420
22.30060 22.0914 0.2449 0.0413
22,5000 22.1027 0.2505 0.0417
21.6000 22.0891 0.2608 0.0428
1 22.6000 22.1026 0.2701 0.0438
1 22.1000 22.1025 0.2662 0.0426
i 22.0000 22.0999 0.2633 0.0416
3 21.9000 22.0950 0.2620 0.0409
21.8000 22.0880 0.2630 0.0405
22.0000 22.0860 0.2603 0.0396
21.6000 22.0749 0.2672 0.0402




22.3000
22.5000
22.3000
22.00£0
22.3000
22.2000

THERE WERE 50

BREAK UP VALUES

SUBSET AVE

22,0571
22,0285
22.1999
22,0428
22,1285
22.0714
22.1428

AVE OF AVES

22,0959

ORDERED VALUES

21.5000
21.6000
21.69000
21.7000
21.8000
21.8000
21.8000
21.8000
21.8000
21.8000
21.9000
21.9000
21.9000
22.00¢00
22.0000
22.0000
22.0000
22.0000
22.0000
22.0000
22.0000
22.0000
22.1000

22.0799
22.0891
22,0935
22.0916
22.0958
22.0979

0.0635

DEV FROM AVE

-0.5979
-0.4979
-0.4979
-0.3979
-0.2979
-0.2979
-0.2979
-0.2979
-0.2979
-0.2979
-0.1979
-0.1979
-0.1979
-0.0979
-2.0979
-0.0979
-0.0979
-0.0979
-0.0979
-0.0979
-0.0979
-0.0979

0.0020
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0.2665
0.27056
0.2698
0.2672
0.2663
0.2643

VALUES IN THE FULL CLEAN SET

INTO 7 SUBSETS OF 7 VALUES EACH

ITS SIGMA

0.1622
06.1709
0.4125
0.2152
0.1979
0.3640
0.2992

THEIR SIGMA AVE OF SIGM2S

0.2603

0.0397
0.0399
0.0393
0.0385
0.0380
0.0373

THEIR SIGMA

0.0991




22,1000
22,1000
22.1000
22,2900
22.2000
22.2000
22,2000
22.2000
22,2000
22.2000
22,2000
22,2000
22.2000
22.2000
22.3000
22,3000
22.3000
22.3000
22.3000
22.4000
22.4000
22,4000
22.4000
22.5000
22,5000
22,6000

22.7000

LCWER BOUND

21.4999
21,7399
21.9799
22,2200
22.4600

0.0020
0.0020
0.0020
0.1020
0.1020
0.1020
0.1020
0.1020
0.1020
0.1020
0.1020
0.1020
0.1020
0.1020
0.2020
0.2020
0.2020
0.2020
0.2020
0.3020
0.3020
0.3020
0.3020
0.4020
0.4020
0.5020
0.6020
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UPPER BOUND HISTOGRAM BARS

k*hkk%k

21.7399
21.9799
22,2200
22.4600
22,7000

t 222282 % 29

t 2 222+ 222222822 8222228 24

t 2 222252 £ 29

L .2 %

NOW LETS ICOK AT THE EXPECTED HISTOGRAM

COUNT EXPECT

4.00
9.00
24.00
9.00
4.00

50.00

THE LAST LINE OF VALUES GIVES SUMS OF VALUES IN COLUMNS

-3.69
12.21
18.18
12.21

3.69

50.00

DIF

-0.30
3.21
-5.81
3.21
-0.30

12.85

DIF2

0.09
10.33
33.75
10.33

0.09

54.61

CHI2

0.02
0.84
1.85
0.84
0.02

3.59

LOWER

-0.59
-0.35
-0.11
0.12
0.36

UPPER

-0.35
-0.11
0.12
0.36
0.60
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X(NVR)

WRITE
NA N
3 220
30 YES ” . n
CARRIAGE
CONTROL
NA@) 240
n E ”
NA TO  (Optional) N

270
1
YES
480 ‘
275 285 NVR:=NVR¢+1
NVAL NVAL2
& -
B, N —N
450 b 4
FINALIZE » |
g E

NUMBER OF
OF DECIMAL

DIGITS, ETC.

Flow Chart for FREE
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INTRODUCTION

The integration of physics concepts with computer programming
skills has enabled students with rudimentary mathematical back-
ground to solve problems of increasing complexity. Both science
and non-science students, when required to solve physics problems
by the application of computer techniques,; appear to grasp, not
only the basic concepts of physics, but the general capabilities
and limitations of the computer as well.

The two sample problems which follow can be solved by students
who have had only an elementary introduction to analytic geometry
and differential calculus. The discussion of these problems is in
two parts: part one deals with the description of simple harmonic
motion; part two deals with damped simple harmonic motion. Experi-
mentally, students in the second year of the science curriculum at
the Naval Academy were found to spend two to three terminal hours
on this material after having had one hour of experience with the

BASIC programming language and an introductory lecture on the phys-
ics involved.

36




STUDENT MANUAL

Simple Harmonic Motion

Any motion that repeats itself in equal intervals of time is
called periodic, or harmonic. If a body moves about an equilibri-
um position due to a force that is proportional to the distance
from the equilibrium position to the body itself, then the body is
said to undergo simple harmonic motion. An ideal example of such
a system is a block set on a frictionless plane and attached to a
spring. (See Figure 1l.) The force on the block due to the spring
is always such as to pull the block back to its equilibrium posi-
tion, (X = 0) and is properly called the restoring force. At
equilibrium, of course, the force of the spring on the block is
equal to zero. At any particular instant, the restoring force is

F = -K*X

where the asterisk (*) indicates multiplication. The minus sign
in the equation shows that this force will always be directed op-
posite to the displacement in the X-direction.

If Newton's Second Law, F = M*A, is applied to the motion of
the block of mass M, and if the force F 1is replaced by the ex-
pression -K*X, the following relationship results:

-K*X = M*A = M*(d2X/dT2)

since A {acceleration) is the second derivative of X with re-
spect to time, T. Thus

M* (d2X/dT2) + K*X = O (1.1)
which describes the periodic motion of the block-spring system.

From this differential equation of motion, the problem is to
determine the position of the mass at every instant of time after
the system has been given an initial displacement. Equation 1.1
is a second-order differential equation for which a numerical so-
lution can be obtained if a set of initial conditions are known.
For instance, in this example, it will be assumed that at time
T = 0, the instantaneous velocity of the block (dX/dT) is zero,
and the displacement x = 25 meters. (For idealized experiments,
the cost of equipment is no object,)

The first step in the soluticn of this problem is to re-write
Equation 1.1 as a system of first-order differential equations.
The solution of the first-order ecuations is relatively simple as
long as one remembers that the expression dX/dT is the slope of
the X versus T curve at any instant of time. To re-write the

37
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small changes in time (AT) can
after a small change in time,
new displacement and velocity

X
\'4
A

These equations are in the form

A crude first-order method
displacement and velocity would

AV

(change in velocity)
AX

(change in displacement)

where A and V represent the

X =
\Y
A

beginning, midpoint, and end of
2a and 2b.)
X1 =
Vi =
Al =

tively at the beginning of the time interval.

A much better estimrate could be
erage of A and V which could be obtained from values at the
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above second-order equations, recall the following definiticns of
instantaneous velocity and acceleration:
v = dx/4aTr ; A = dv/aTr = da2x/4ar?
It is then possible to re-write Equation 1.1 as follows:
M* (dv/dT) + K*X = 0
or dv/dT = -K*X/M (1.2)
and ax/dar = V (1.3)

The problem can now be solved approximately if the incremental
changes in velocity (AV) and displacement (AX) which occur during
be approximated.
(AT in BASIC will be called D), the

can be found by

In other words,

X + AX
V + AV
~-K*X/M

of "assignment statements,” X =

X + AX, which direct the computer to calculate a new value of X
by adding AX to the current value.

for approximating the change in
be
A*D
(acceleration) * (change in time)
V*D
(velocity) * (change in time)
acceleration and velocity respec-
Therefore,
X + V*D
V + A*D
-K*X/M

made by using a weighted av-

the time interval. (See Figures

In this figure, the initial slopes

X

\'
~K*X1/M
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are used to predict the slopes, V2 and A2, at the midpoint of the
time interval, AT = D. Curved arrows indicate slopes of tangents
to the X-T and V-T graphs,

X2 = X1 + V1*D/2
V2 = V1 + Al1*D/2
a2 = =K*X2//M

Next, the values of V2, A2 are used to make a second predic-
tion of the midpoint values of the slopes V3 and A3 starting
from X1 and V1. (See Figures 3a and 3b.)

X3 = X1 + v2*Dp/2
V3 = V1 + A2*D/2
A3 = -K*X3/M

Finally, this set of slopes is used to predict the values of +the
slopes V4 and A4 at the end of the time interval (D), starting
from X1 and V1. (See Figures 4a and 4b.)

X4 = X1 + Vv3*D
V4 = V1 + A3*D
A4 = -K*X4/M

The theory of the Runge-Kutta approximation shows that if the
slopes are weighted by factors 1/6, 2/6, 2/6 and 1/6, respectively,
then the approximation will be fourth-order; i.e., correct to within
errors proportional to D®. Thus, if we set

V = (V1 + 2*V2 + 2*V3 + V4)/6
A = (Al + 2*A2 + 2*A3 + A4)/6

then the new values of displacement and velocity are found by using
the weighted averages as follows:

X = X+V*D = X+ (V1 + 2*V2 + 2*V3 + V4)*D/6
V = V+A*D = V + (Al + 2*A2 + 2*A3 4 A4)*D/6

Note that thie values of X1, X2, X3 and X4 were computed in order
to obtain the corresponding slopes Al, A2, A3 and A4 of the V-T
curve, which in turn predicts the next value of V which predicts
the next value of X and so on.

The above algorithms have been incorporated into the computer
program SIMPLE HARMONIC MOTION for the determination of the displace-
ment, velocity and acceleration at equal increments of time after the
mass is set in motion. This program is designed to give graphic out-
put of X{T) directly, however, the PRINT statement, number 300,
can be changed to

300 PRINT T, X, V
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for nunerical output. TO0, X0, and V0 are initial values of T,
X and V.

100 REM ***kkkkkkikkkkk SIMPLE HARMONIC MOTION ***%kkkkkkkkkkk*

120 REM

130 REM x* x* x* x* x* x* x* E 4 x* * * x* x* * x* INPUT DATA
140 REM

150 READ K, D, TO, X0, VO, M

160 DATA 2.8, 0.1, 0, 25, 0, 1

170 PRINT "SPRING CONSTANT = "K"NEWTONS/METER"

180 REM

190 REM * * * *x * * % x * % *x *x TINITIAL CONDITIONS
200 REM
210 LET
220 LET
230 1IET
240 LET
250 REM
260 REM
270 REM
280 PRINT " X — DISPLACEMENT IN METERS"”
290 PRINT

300 PRINT TAB(33); "O*

310 PRINT "SECONDS ———— e e e e e e "
320 PRINT "~—————- - "

330 LET Y1 = INT(X + .5) + 36

340 PRINT T; TAB(Y1l); "=*"

350 LET N=N+ 1

360 IF N = 40 THEN 580

o
ogxXH
(=Nl

24X

%
*
»
b))
*
*
*
*
*
*

* * * % PLOT ROUTINE

370 REM

380 REM * * * * * * * % *x *x *x *x * CALCULATE SLOPES
390 LET X1 = X

400 LET V1 = V

410 LET Al = -K*X1/M

420 LET X2 = X1 + V1*D/2

430 LET V2 = V1 + Al*D/2

440 LET A2 = -K*X2/M

450 LET X3 = X1 + V2*D/2

460 LET V3 = V1 + A2*D/2

470 LET A3 = -K*X3/M

480 LET X4 = X1 + V3*D

490 LET V4 = X1 + A3*D

500 LET A4 = ~-K*X4/M

510 REM * * * * * * % % *x % NEW VALUES OF X, V, AND A
520 LET X = X + (V1 + 2*V2 + 2*V3 + V4)*D/6

530 LET V = V + (A) + 2*A2 + 2*A3 + A4)*D/6

540 LET A = -K*X/M

550 IET T=T + D

560 SETDIGITS(3)
579 GO TO 330
580 END
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SPRING CONSTANT = 2.8 NEWTONS/METER

TIME X-DISPLACEMENT X-VELOCITY
{SECS.) (METERS) (METERS/SECOND)
0 30 0
.05 29.9 -4.2
.1 29.6 -8.36
.15 29.1 -12.5
.2 28.3 -16.5
.25 27.4 -20.4
.3 26.3 -24.2
.35 25, -27.7
.4 23.5 -31i.1
.45 21.9 -34.3
.5 20.1 -37.3
.55 18.2 -39.9
.6 16.1 -42.3
.65 13.9 -44.5
.7 11.7 -46.2
.75 9.32 -47.7
.8 6.9 -48.9
.85 4.44 -49.6
.9 1.94 -50.1
.95 -.566 -50.2
1. -3.07 -49.9
1.05 -5.55 -49.3
1.1 -8. -48.4
1.15 -10.4 -47.1
1.2 ~12.7 -45.5
1.25 -14.9 -43.5
1.3 -i7.1 -41.3
1.35 -19.1 -38.8
1.4 -20.9 -36.
1.45 -22.6 -32.9
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Damped Harmonic Motion

In a real spring problem, such as one may study in the labora-
tory, the amplitude of oscillation gradually decreases to zero.
This is, of course, due to friction, and can ke accounted for by
the addition of damping forces. The oscillations that result are
called damped harmonic motion. 1In Figure 5 friction has been sim-
ulated by taking a disk, which is attached to the spring-mass sys-
tem, and immersing it in a fluid. As a first approximation, one
could assume that the faster the disk moves, the greater will be
the force of friction, or, in equation form:

friction force = - (constant)*(velocity in X-direction)
or, F = -B*(dX/4T)

The minus sign indicates that the friction force will be in a di-
rection opposite to the direction of motion at any instant of time.

In the free-body diagram, it is clear that both the spring
force (-K*X) and the friction force (-B*(dX/dT)) act upon the mass,
M, at all times to produce the resulting damped harmonic motion.
Again, beginning with Newton's Second Law,

F = M*;A
-K*X - B*(dX/aT) = M*(d?X/dT?)
dividing through this equation by M, and rearranging terms, yields
d2x/d4T2 + B/M* (dX/dT) + K/M*X = 0 (2.1)

(Note: the computer reads K/M*X as (K/M)*X.) Equation 2.1 is a
second-order differential equation which can be very effectively
solved by numerical methods if proper initial conditions are given.
As in the previous problem, Equation 2.1 can be transformed to a
combination of first-order differential equations. First, by def-
inition, 4X/dT = V, velocity, and dv/dT = d2X/dT2 = A, so that

dv/dT = -B/M*V - K/M*X (2.2)
In this manner, the problem has been reduced to one which contains
two first-order differential equations which can be solved, as be-

fore, by a series of approximations based on initial conditions and
estimates of the slopes at each increment of time AT (in BASIC AT

will be replaced by Dj.
Therefore, after each increment of time,
X = X+ (V1 + 2*V2 + 2*V3 + V4)*D/6 (2.3)
and Vv = V + (Al + 2*A2 + 2*A3 + A4)*D/6

and, from Equation 2.2,

:
3
E
éi
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i} A = -B/M*V - K/M*X
The slopes, V1 through V4 and Al through A4 (velocities and

accelerations, respectively) at the four points shown in Figures
2, 3, and 4, are found as follows:

(iet ¢1 = -B/M and C2 = -K/M)
X1 = X
Vi = V
Al = Cl*vl + C2*X1 (from Egi.ation 2.2)

These slopes predict the slopes at the midpoint of the time incre-
ment, D, by

e den e ‘oo o
© o e AR St i 2 .

X2 = X1 + V1*D/2
V2 = V1 + Al*D/2
A2 = C1*V2 + C2%*X2

;i A second estimate of the slopes at the midpoint is made by

X3 = X1 + Vv2*D/2

V3 = V1 + A2*D/2

A3 = C1l*V3 + C2*X3
and, finally, the slopes at the end of the time interval are found
by

X4 = X1 + V3*D

va = V1 + A3*D

A4 = Cl*V4 + C2*X4

The only major difference between this and the undamped case is in
the calculation of A. Substitution into Equation 2.3 then yields
the desired values of X and V.

The DAMPED HARMONIC MOTION program which follows illustrates
the use of these algorithms to describe the motion of the system.
For the sake of clarity, the asterisks in the graphic output have
been connected by hand-drawn straight lines. You can easily com-
pare the results for different choices of parameters by superimpos-
ing one graph over another on a light-box or against a windowpane.
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REM ****kkk*kkx*kx#x* DAMPED HARMONIC MOTION *#**kakaikikiki
REM

REM * * * * % * % % % % % % * * % INPUT DATA
REM

READ K, B, M, D, VO, TO, X0

DATA 2.8, 0.4, 5, 0.10, O, O, 30

PRINT

PRINT "SPRING CONSTANT = "K"NEWTONS/METER"

PRINT

PRINT "DAMPING COEFFICIENT = "B"NEWTONS/METER/SEC"

REM
REM *
REM
LET C1 = -B/M
LET C2 = -K/M
LET X
LET V
LET T
REM * * * * * * * % % % * PRINT COMPUTER OUTPUT
PRINT

PRINT "TIME", "X-~DISPLACEMENT", , "VELOCITY"

LET M=0

PRINT T, X, , V

*»

* * * % * * * *x % % JINITIAL CONDITIONS

(=N

X
\'
T

IF (T - 30) > = 0 THEN 570

REM * * * * * * * * * * * * * CALCULATE SLOPES
LET M=M+ 1

LET X1 = X

LET V1 = V

LET Al = Cl1l*V1 + C2*X1

LET X2 = X1 + V1*D/2

LET V2 = V1 + Al*D/2

LET A2 = Cl*V2 + C2*X2

LET X3 = X1 + V2*D/2

LET V3 = V1 + A2*D/2

LET A3 = Cl1*V3 + C2%*X3

LET X4 = X1 + V3*D

LET V4 = Al + A3*D

LET A4 = Cl*V4 + CZ2*X4

REM

REM * * * % * *x % % & NEW VALUES OF X, V, A, AND T
REM

LET X = X + (V1 + 2*V2 + 2*V3 + V4)*D/6
LET V = V + (Al + 2*A2 + 2*A3 + A4)*D/6
LET A = C1*V + C2*X

LETT=T+D

IF M = 10 THEN 310

GO TO 330

END
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SPRING CONSTANT = 2.8 NEWTONS/METER

DAMPING COEFFICIENT = .4 NEWTONS/METER/SEC

TIME X-DISPLACEMENT VELOCITY
0 30 0
1. 24.9499 -10.1607
2. 11.5866 -15.9949 ;
3. -4.7886 ~15.801 ;
4. -18.2324 ~10.1108 ]
5. -24.,2815 -1.33245 ‘
6. -21.3957 7.23454
7. ~11.2697 12.6184
8. 2.00713 13.1865
9. 13.5613 9.11154
10. 19.4955 2.17251
11. 18.173 -4.9898
12. 10.6138 -9.86009
13. -6.50444E-2 -10.9162
14. -9.89872 -8.08357
15. -15.5225 -2.64969
16. -15.2991 3.28984
17. ~9,75677 7.62444
18. ~-1.23836 8.9659
19. 7.05587 7.07686
20. 12.2503 2.86502
21. 12.7719 -2.02169
22. 8.79869 -5.82688
23. 2.05266 -7.30666
24, -4.87397 -6.12401
25. -9.57636 -2.89649
26. -10.5765 1.09269
27. -7.81064 4.39351
28. -2.5336 5.9077
29. 3.22067 5.24474
30. 7.40841 2.80357
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SPRING CONSTANT = 2.8 NEWTONS/METER
DAMPING COEFFICIENT = .4 NEWTONS/METER/SEC

X - DISPLACEMENT IN METERS

SECONDS ———m = e mm e o e e
0
1 . / /
S |

2.

30 /*-'
4.

5. *

6. \t\\

7. *\

8. -

9. *\\*\*
10.

11.

12. /*/
13. *

14. */

15. *

"
18. *

19.
20. T~

23 -~
32. ",”’jvffff’
25. [/
26. ~
27.
28.
\*
29.
30. ~
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SPRING CONSTANT = 5.6 NEWTONS/METER
DAMPING COEFFICIENT = .4 NEWTONS/METER/SEC

X - DISPLACEMENT IN METERS

SECONDS === == o e e e e e e e
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SPRING CONSTANT = 5.6 NEWTONS/METER
DAMPING COEFFICIENT = .8 NEWTONS/METER/SEC

X - DISPLACEMENT IN METERS

SECONDS == e e e e e e e e e

0 *
1. /*/

2 K e

3. £
4. \
5. b
6. T
7.
8. rd
9.
10.

*//’

11.
12. \'\.
13.

14.

15.

16. —
17. —

18. ¢
19.

20. ~
21.

22.

23.

24.
25, +

26.
27. t\\t\*
28. "

29.
30. *f




TEACHER'S GUIDE

In this presentation, the functional relationships have been
developed in BASIC in order to facilitate the relation of the al-
gorithms describing the physics directly tc ‘the computer program.
For instance, in the first program initial conditions are defined
in line numbers 210 through 240 of the program. The plotting of
computer-generated output is directed by line numbers 280 and 340.
The four slopes estimating velocity and acceleration are calcula-
ted in line numbers 390 through 5€0. Time is incremented in line
550. The statement SETDIGITS (3) in line 560 is used to set the
size of the numbers to be printed by the computer, in this case;
three significant digits. It is included solely for esthetic rea-
sons.

Students should be encouraged to write a similar program and
to explore the effects on the perioa of changing the spring con-
stant, K, the mass, M, the initial displacement, X0, or the initial
velocity, V0. New values of K, M, X0, and V0 can be entered in
the data statement in line 160. The period can actually be deter-
mined from the piotted computer output, thus, allowing students to
graph the period versus any of the above variables to determire an
empirical relationship. (Recall that T = 2nx/M/K .)

In the second program numerical output is provided. However,
to enter the piot routine it is only necessary that line numbers
280 through 340 of the previous program must be added. Compare the
numerical output of this program (numbers are printed to six digits)
to the previous progranm, where the statement SETDIGITS (3) was used.
Students should be encouzaged to investigate the effect on period
and amplitude of manipulating values of the spring constant, mass
and damping coefficient.

Solution of the differential equation describing the motion
of the damped spring-mass system can be found in most handbooks.
For comparison of results, students should program both the numer-
ical solution and the closed-form solution of this problem, which,
for TO = @, is

g X = e*“”“[xo coswT + C sinwT]
3 where w = J/E/M, C = V0/u + (B/M) (X0/w)

For the sake of realism, these equations have not been scaled
to Aimensionless variables. However, programming could have been
simplified by scaling time tc units of one period, T = t/T.

References

Halliday, D. and R. Resnick, Physics for Students of Science
and Engineering, John Wiley & Sons, Inc. (1967).

Hamming, R. W., Numerical Methods for Scientists and Engineers,
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INTRODUCTION

The twc programs discussed here illustrate the use of the com-
puter as a computational adjunct to an introductory physics demon-
stration or laboratory. The programs are intended tc aid the stu-
dent in analyzirg the data acquired in the course of the experiment.
The first program, MOMEN, was developed to cive immediate answers
for a lecture demonstration of the conservation of momentum. This
demonstration will be part of a one-semester "Physics for Poets"
course which does not have an associated laboratorv. The students,
for the most part, are second-year students who have no preparation
in physics, but may have studied another laboratory science for one
year.

Since this prcgram has not been tested with any groups of stu-
dents, we omit mention of any student materials, except to say that
the students, by this juncture, will have been introduced to the
computer and will understand simple programming concepts. The
principle of conservation of momentum will have been discussed pri-
or to the demonstracion.

The second progiam, PEND1, was written for use in the general
physics laboratory, in which simple harmonic motion is studied by
recording the position of a pendulum bob (see Figure 1) as it moves
through one cycle of its oscillation. This program has been used
by approximately 60 first- and third-year science majors concurrent-
ly studying calculus. The method of calculating velocities and
accelerations used in the program had been used previously in the
course, although the students had no previous experience with the
computer. The program was introduced in a written description giv-
en to the class a week prior to the experimznt. The three-hour
laboratory period was devoted to a summary explanation of the ex-
periment and program, obtaining the data, keypunching these data,
running the program, and plotting the results.

Inasmuch as these two programs have had little classroom test-
ing, their student syllabi are not fully developed. However, a
student manual for the simple harmonic oscillator is presented in
the Appendix to this paper.
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TEACHER'S GUIDE

Conservation of Momentum

Experiments in the conservation of momentum in cne dimension
are quite common in the classroom and can take many forms: a linear
air track may support two colliding gliders, two steel balls may be
hung on bifilar suspensions, etc. In such an experiment some device
must be provided to measure the position of the particles at equal
intervals of time. An open-shuttered Folaroid camera and strobe il-
lumiration, or the spark-trace attackment found on most air tracks,
would be appropriate. The positions indicated by these devices
permit calculation of velocities and thence momenta; the momentum
before collision is compared with the momentum after collision.

The program is divided into three parts: the velocity of each
particle before and after collision is calculated; the momenta are
determined; and the momentum of the system before the collisicii is
compared with the momentum after the collision.

The input data required by the program are:
i. Masses of two particles, M(1l) and M(2).

2. The time interval, DELT, between successive position
measurements.

3. The number, L, of positicn measurements before colli-
sion (chosen such that the number after collision is
also 1L).

4. The positions of the particles which form the three-
dimensicnal array DISP(I, J, K).

Ae. DISP(IIlIl)
of particle

b. DISP(I,2,1) =1, . . ., L give the positions

I=1, . . ., L give the positions
1
I
of particle 2 before collision.
I
1
I
2

before colilision.

C. DISP(I’l’z)
of particle

=1, . . . L give the positions
after collision.

d. DISP(I,2,2)
of particle

=1, . . ., L give the positions
after collision.

The technique used to compute the velocity eliminates a common
error the student might make if he were performing the calculation
without direction. He is faced with the problem cf finding the av-
erage interval between displacements separated by equal intervals
of time. If we label these positions X(1), X(2), . . ., X(K),

. . . and the intervals D(1) = X(2)-X(1); D(2) = X(3)-X(2); D(I) =
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X(I+1)~-X(I), his intuition will likely direct him to consider

D = D(I)

Ul yeer

1 |

I=1

as the average value of the interval. Substitution of the measured
points X(1), . . ., X(n+l) into the above expression shows that it

reduces to

—

D =

( X(n+1)-X(1) )

3 )

which neglects most of the data obtained.

A more efficient technique (in the sense that each data point
is used once to find the average interval) is effected if the posi-
tion data are divideé into two groups and paired tc produce inter=
vals roughly one-half the total interval. These half-intervals are
then averaged, the time required to travel a half-interval is com-
puted, and the average velocity is found.

Assume, as an example, that nine position measurements (L = 3)
are made before the collision X(1), X(2), . . ., X(9). The pair-
ings chosen to evaluate the average half-interval in this case would
be X(9)-X(4), X(8)-X(3), X(7)-X(2), and X{6)-X(1l). To choose the
proper» position index to subtract from X(9) we use integer division,
dividing L by 2 to give the integer variable L2. In this ex-
ample, L divided by 2 gives 9/2 which is equal to 4 in integer
arithmetic. The sum of the four half-intervals for the first parti-
cle ( X(9)-X(4) ) + ( X(8)=X(3) ) + ( X(7)-X(2) ) + ( X(6)-X(1) )
is computed and stored as the variable named INTOT(1,1). The aver-
age of these four determinations is called AVINT(1,1) and is found
by dividing by the real value of L2. Finally, since the value of
AVINT(1,1) contains the distance traveled in five time intexvals,
we find the velocity of the first particle by dividing AVINT(1,1)
by the number of time intervals multiplied by the time per interval.

It would have been preferable to perform data reduction in
terms of standard deviations, thereby utilizing fully the data col-
lected, * however, the sophistication of the students in this course
does not admit of it, hence the above stratagem, which is clearly
preferable to being apprehended in the act of taking useless data.
The remainder of the computation proceeds very simply after veloci-
ties have been determined; momenta are calculated and values of
momenta before and after collision are compared.

MOMEN and a sample of its output are shown on the following
pages.

*"Data Reduction," Paul A. Smith, in Computer-Based Physics:
An Anthology, R. Blum, et al, published by the Commission on College

Physics (1969).
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Program: MOMEN

[1E 3-DIMENSIONAL ARRAY DISP{I,J,K) CONTAINS INFORMATION ABOUT THE
DISPLACEMENTS OF THE TWO MASSES INDEXED BY J. K IS ONE FOR DIS-
PLACEMENTS BEFORE COLLISION, TWO FOR THOSE AFTER. MASSES ARE DE-
NCTED BY M(J). I GIVES THE NUMBER OF APPROXIMATELY EQUALLY SPACED
DISPLACEMENTS SEPARATED IN TIME BY THE INTERVAL DELT
KEAL M(2), INTOT(2,2), MOM1, MOM2
DIMENSION DISP(15,2,2), AVINT(2,2), VEL(2,2)
E READ (2,10) M, DELT, L
g 10 FORMAT (2F5.1, F4.3, I2)
? READ (2, 12) (((pISP(1,J,K), I = i,.), J = 1,2),K = i,2)
12 FORMAT (2F4.1)
C USE INTEGER DIVISION TO DIVIDE THE INPUT DATA INTO TWC PARTS
L2 = L/2
RL2 = L2
c FIX VALUES OF L AND L2 SINCE THEY WILL CHANGE IN THE DO LOGPS
N=1L
N2 = L2 .
C COMPUTE TOTAL HALF INTERVAL VALUES
po 100 J = 1,2
po 100 X = 1,2
INTOT (J,K) = 0
L=N
L2 = N2
90 INTOT (J,K) = INTOT(J,X) + DISP(L,J,K) - DISP(L2,J,K)
IF (L2 - 1) 100,100,80
80 L = L-1
L2 =L2 -1
GO TO 90
100 CCNTINUE
C COMPUTE AVERAGE VELCCITIES
TIME = DELT* ((N+1)/2)
DO 200 J = 1,2
DO 200 K = 1,2
AVINT (J,K) = INTOT(J,K)/RL2
VEL(J,K) = AVINT (J,K)/TIME

200" CONTINUE
14 FORMAT (' VELOCITY OF THE FIRST PARTICLE BEFCRE COLLISION WAS',

XF6.1,/5X,' WHILE THAT OF THE SECOND PARTICLE WAS®,Fé6.1)
WRITE (3,14) VEL(1,1), VEL(2,1)
16 FORMAT (' VELOCITIES OF THE PARTICLES AFTER COLLISION WERE',
XF6.1,' AND',F6.1' RESPECTIVELY."')
WRITE (3,16) VEL(1,2), VEL (2,2)
MOM1 = M(1)*VEL(1,1) + M(2)*VEL{(2,1)
18 FORMAT (' TOTAL MOMENTUM OF THE SYSTEM BEFORE COLLISION WAS',
XrF8.1}
WRITE (3,18) MOMl
MOM2 = M(1)*VEL(1,2) + M(2)*VEL(2,2)
20 FORMAT (* TOTAL MOMENTUM OF THE SYSTEM AFTER COLLISION, ON THE
XOTHER HAND, WAS ', F8.1)
WRITE (3,20) MOM2
DISCR = ((MOM1 - MOM2) / (MOM1 + MOM2)) * 100,

aQNnaQa

.0
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22 FORMAT(' THUS OUR SIMPLE EXPERIMENT HAS SHOWN TEAT MOMENTUM IS CON
XSERVED WITHIN ', F6.1)

WRITE(3,22) DISCR ‘
WRITE (3,24)

24 FORMAT (' PERCENT. WHAT EFFECTS CONTRIBUTE TO THIS DISCREPANCY.')
CALL EXIT
END

v ey ay * " > i 1) (3
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Output:

VELOCITY OF THE FIRST PARTICLE BEFORE COLLISION WAS 9.9

WHILE THAT OF THE SECOND PARTICLE WAS 0.0
VELOCITIES OF THE PARTICLES AFTER COLLISION WERE 3.3 AND 13.3 RESPECTIVELY.
TOTAL MOMENTUM OF THE SYSTEM BEFORE COLLISION WAS 997.7
TOTAL MOMENTLi4 OF THE SYSTEM AFTER COLLISION, ON THE OTHER HAND, WAS 1007.7
THUS OUR SIMPLE EXPERIMENT HAS SHOWN THAT MOMENTUM IS CONSERVED WITHIN -0.4
PERCENT. WHAT EFFECTS CONTRIBUTE TO THIS DISCREPANCY.
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Simple Harmonic Motion

This rrogram was written for use in the general physics labor-
atory at Muhlenberg. Simple harmonic motion is studied by making
a record of the position of a pendulum bob as the bob moves through
one cycle of its oscillation. A sketch of the apparatus is shown
in Figure 1. A spark-trace record of the position of the bob is
left on sensitized paper placed beneath the pendulum on a curved
support. The student measures positions from the paper, plots
these results, computes velocities from displacements, plots these
values, and finally computes and plots accelerations. The three
graphs obtained are compared to the trigonometric functions which
describe the system.

Figure 1

The input for the program is:

1. The time interval in seconds between successive sparks,
DELT. -

2. The total number of data points, J.
3. The ordered positions, in centimeters, of the J points.
We require that the position of the J points be measured from

the midpoint of the motion (which was marked on the sensitized paper)
so that the data have the approximate form R sin(¢t) where R =




[P
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amplitude of oscillation. A typical trace is sketched in Figure 2.
Furthermore, the initial data point should be the last negative val-
ue of the position (1) of the bob before it swings positive. The

J position coordinates are punched on cards using a free style in-
put, i.e., the actual number (including its decimal point in the
appropriate place) is punched, a space, another number, space, etc.*

The initial computation in the program is the angular frequency
of the motion. The first zero of displacement from the vertical
occurs (by design) between the first two points (1) and (2). This
location is found by linearly interpolating between these points.
Since the points then become positive, the next zero occurs just be-
fore the next subsequent negative position (3). Assuming that the
midpoint of the motion has been correctly identified, the time be-
tween the two zeroes is one-half the period.

. . . . 3@ . . . 4 ¢ .
Y e . . . . 10 2@ . . v o °

Figure 2

The phase angle and approximate amplitude R are then calcu-
lated, the latter simply being identified as the maximum of the
absolute values of the displac=ament. Differences between successive
positions are determinred and, by multiplying by the reciprccal of
the time interval, the average veloci.ty in that time interval is
found. Similarly, differences in velocity multiplied by the recip-
rocal of the time interval give average accelerations.

For purposes of plotting graphs the expected values of the
displacesiecnt R sin(wt), velocity Ru cos(wt), and acceleration
-Rw® sin(wt) are computed at times corresponding to the times for
which the experimental values have been calculated.

The six columns of print-out are double spaced. In this way
the velocities which approximate the instantaneous velocity at the
midpoint of the interval between two displacements can be placed on
lines which alternate with the displac=uw-nts. In a similar fashion
the accelerations are printed on lines which alternate with the ve-
lceities.

*Smith, Paul A., op. cit.
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Program: PEND1

DIMENSION X(90), V(90), DIFF(90), XSIN(90), DIF2(90j, A(90),ASIN(9
10), VCOS(90)
READ (2,10) DELT, J

10 FORMAT (F5.3, I2)
IF (DELT) 50,59,12

12 iF (J) 50,50,14

14 CALL FREES (X,J)

C CALCULATE THE ANGULAR FREQUENCY OF THE OSCILLATION

ZERO = X(1)/(X(1} - X(2) )
J2M = (J/2) - 4
DO 60 I = J2M,J
IF (X(I)} 70,70,60

60 CONTINUE

70 ZEROL = I - 2 + X(I-1)/(X(I-1) - X(I))
T2 = (ZEROL - ZERO } * DELT
OMEGA = 3.141593/T2

C CALCULATE THE PHASE ANGLE OF THE MOTION
PHI = ZERO * OMEGA * DELT

C CALCULATE THE APPROXIMATE AMPLITUDE OF THE MOTION
XMAX = X (1)

DO 100 I = 2,J
IF (ABS(X(I)) - XMAX) 100,100,90
90 XMAX = ABS(X(I))
100 CONTINUE
C CALCULATE THE AVERAGE VELOCITY BETWEEN X(I) AND X(I+1)
J1=J-1
TDELT = 1.0 / DELT
DO 200 I =1, J1
DIFF(I) = X(I+1l) - X(I)
v(I) = DIFF(I) * TDELT
200 CONTINUE
C CALCULATE THE AVERAGE ACCELERATION BETWEEN V(I) AND V(I+1)
J2=J - 2
DO 300 I =1, J2
DIF2(I) = V(I+1l) - V(I)
A(I+1) = DIF2(I) * TDELT
300 CONTINUE
C COMPUTE THE EXPECTED VALUES OF DISPLACEMENT AND ACCELERATION
ARG = OMEGA * DELT
OMEG2 = OMEGA * OMEGA
DO 400 I = 1,J
RLI = I
XSIN(I) = XMAX * SIN{(RLI - 1.0) * ARG - PHI)
ASIN(I) =-OMEG2 * XSIN(I)
400 CONTINUE
COMPUTE THE EXPECTED VELOCITY AT THE MIDPOINT OF A DISPLACEMENT
INTERVAL
AMPV = XMAX * OMEGA
ARG2 = ARG * 0.5
VCOS (1) = AMPV * CGCS(ARG2 - PHI)
DO 500
RLI = I

Qan
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VCOS (I) = AMPV * COS((RLI * ARG) - ARG2 - PHI)
500 CONTINUE
WRITE {3,16) CMEGA, XMAX
16 FORMAT (' THE ANGULAR FREQUENCY AND AMPLITUDE HAVE VALUES' 2F10.2/)
WRITE (3,18)
18 FORMAT (' WHAT UNITS ARE ASSIGNED TO THE QUANTITIES LISTED ABOVE'/)
WRITE (3,19) PHI
19 FORMAT (' THE PHASE ANGLE HAS THE VALUE IN RADIAN MEASURE OF MINUS
X ' Fl10.4 /)
WRITE (3,20)

20 FOEMAT ( ' POSITION RSIN (WT) VELOCITY RWCOS (WT)
X ACCELERATION ~ RWW3IH (WT) ')
WRITE (3,21)
21 FORMAT( ‘' CM M CM/SEC CM/SEC
X CM/SEC/SEC CM/SEC/SEC ' / )

WRITE ( 3,22) X(1), XSIN(1), V(1), VCOS(1)
22 FORMAT (F10.2, 6¥, F9.2/ 31X, F9.1 , 6X, F9.1)
WRITE ( 3,24; (X(I) , XSIN(I) , A(I) , ASIN(I) , V(I), VCOS(I),
XI = 2, J1i)
24 FOR¥AT( F10.2, 6X, F9.2, 36X, F9.0, 6X, F9.0/ 31X, F9.1,6X,F9.1)
WRITE (3,26) X(J),XSIN(J)
26 FCRMAT (F10.2,6X,F9.2)
50 CALL EXIT
END
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APPENDIX

Student Manual for Pendulum Experiment (Simple Harmonic Motion)

The apparatus used in this experiment [Figure 1] is a pendu-.
lum made of a pointed metal bob suspended from a long wire. A
strip of sensitized paper is placed parallel to the trajectory of
the bob on a curved metal track. At regular intervals of time a
large potential difference is appiied between the bob and tae
metal track causing a spark discharge. After one period of motion
of the pendulum, the paper attached to the metal track contains a
racord of the position of the bob as a function of time. A typi-
cal paper record is shown below the apparatus sketch [Figure 2].

We must extract from the tape not only position vs. time in-
formation, but also the wvelocity and acceleration of the bob at
equal intervals of time. This is a data reduction problem in which
a large number of similar calculations must be performed. It is,
therefore, an ideal problem to be handled by a computer.

We assume that a computer is still a "black box" to most of
you, i.e., that you have had little or no experience working with
one. It is then appropriate to give a brief descriptiori of the
function of a computer.*

Imagine that you have employed a secretary who is efficient
but not very intelligent. We can easily catalog the skills that

she probably possesses. She can:

1. perform simple mathematical operations--addition,
subtraction, multiplication, and division.

2. file information in definite locations and remember
what these locations are.

3. follow carefully detailed instructions step-by-step.

4. compare two numbers and decide which is the greater.

5. type information as it accumulates.
These are not extreme standards to require in hiring a secretary.
However, they represent the five functions performed by a computer.
Why then are computers considered, for better or for worse, such

an important part of our technological civilization? The answer
is simple--speed. Because a computer can perform a calculation so

*See, for example, Fortran for Physics, A. M, Bork, Addison-
Wesley Publishing Co., Inc., Reading, Massachusetts (1967).
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much more rapidly than any other calculating device, it can com-
plete any problem in a brief period of time that a human could do
only in an unreasonable amount of time. This change of time scale
permits us to contemplate operations with a computer which would
be in the realm of fantasy without this tool.

Muhlenberg installed an IBM 1130 computer system i the fall
of 1968. Its justification in an educational institution depends
on its usefulness as a computational tool, as a bookkeeping device,
and as a teaching machine in Skinner's sense.

We wish to use the computer as a computational tool. To at-
tack the problem of communicating with the computer, we must first
decide what calculations we are to perform. Since we must make a
graph of positiecn, velocity, and acceleration and compare these
with the theoretical values:

X = R sin(wt - ¢)
V = Vg cos{ut - ¢}
A = -Ap sin(wt - ¢)

we see that we must calculate velocity, acceleration, and thLe quan-
tities R, w, and ¢.

The program, i.e., the set of instructions which directs the
computer to perform the calculations we need, is written in a lan-
guage called FORTRAN (for FORmula TRANslation). The language was
designed to conform closely to the actual structure of algebraic
calculations. A copy of the program is attached to this supplement.
This program is stored in the memory of the machine:; to run the
program you need only enter data {the positions of the bob) in the
form of punched cards.

Perhaps the simplest way tc understand both the computation
procedure and the program is to look at the program and follow its
statements through the calculation. Note that all statements pre-
fixed by the letter C in the far left hand column are comments
inserted into the program to clarify steps for the reader. They're
ignored by the machine. We shall use them as "chapter headings.”

C CALCULATE THE ANGUILAR VELOCITY OF THE OSCILLATION

The angular velocity w is equal to 2n/T where T is the
period of oscillation. We assume the positions of the bob (mea-
sured from the midpoint of the motion) are entered into the machine
consecutively beginning with the last negative value before the bob
swings positive. We then find the time for which the pendulum bob
had zero displacement. Subsequent positions are searched to find
the next time the displacement was zero. The difference between
these two times is one half the period; the angular velocity follows
directly.
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C CALCULATE THE PHASE ANGLE OF THE MOTION

The displacement X is given by the expression R sin(wt-4¢).
When X 1is 2zero, the phase angle ¢ = wt. The statement after the
comment referred to above performs this calculation.

C CALCULATE THE APPROXITMATE AMPLITUDE OF THE MOTION

This step illustcrates gquite nicely two programming techniques,
use of the IF statement and use of the DO ioop.

The position data are deroted X(I) where I goes from one
to the total number of data points. Tre technique we use to find
the amplitude is simply to look at the absolute value of each X(I)
and determine if it is larger than some other value of X(I) that
we have assigned the value of XMAX. If it is larger we set the
present value of X(I) equal to XMAX. XMAX is originally set
equal to X(1).

Using the DO statement we let X(I) go from X(2) to X(JJ)
(J is the total number of data points) by steps cf one. Each
value of X(I) 1is tested by the statement:

I7 (ABS(X(I)) - XMAX) 100,100,90
This means:

1. Take the absolute vaiue of X(I).

2. Subtract from this XMAX.

3. If the result is

a. negative--go to statement 100.
b. zero--gc to statement 100.
c. positive--go to statement 90.

Statement 90 changes XMAX from any previous value it had to a
new value, viz. the absolute value of the present X(I). The pro-
gram then moves to statement 100 and then back to the beginning

of the DO loop to increment I by cne until I = J.

-

C CALCULATE THE AVERAGE VELOCITY BETWEEN X(I) AND X (I+1)
You have made this calculation in two previous experiments.
V(I) = ( X(I+l) - X(I) )/ DELT
where DELT is the time interval between two successive points.
We identify this velocity as the average velocity evaluated at the

midpoint of the interval between X(I) and X(I+l). For this rea-
son the velocity and position appear in the print-out spaced on
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alternate lines.

C CALCULATE THE AVERAGE ACCELERATION BETWEEN V(I) AND V(I+1)

This calculation is the same as that directly above

A(I+1) = ( V(I+l) - V(I) )/ DELT

This represents the average acceleration between the two veloci-
ties.

The program concludes by calculating

R sin(wt - ¢}
Ru cos(wt - ¢)
-Rw? sji.(ut ~ ¢)

for the values of time associated with the computations above.

Using the print-out, make three graphs: one of the displace-

ment vs. time, the second of velocity vs. time, and the third of
acceleration vs. time.

Each should show experimental (or calcula-
ted) and theoretical results.

Why does the agreement between
theory and experiment become steadily worse as we move successive-

ly from displacement to velocity to acceleration?
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INTRODUCTION

In the Physics Department at Colorado State Univeirsity we
have consciously endeavored to stimulate students tc use the com-
puter in their course work. In the introductory physics courses
with calculus, we have fostered the generation of programs written
by students and pertaining to the subject matter of the course on
a voluntary basis:. In the graduate-level Electromagnetic Theory
course, problems were assigned to each student. The more experi-
enced were given realistic problems, while novices were required
to create function-generators. The program described here, ATOM,
was written by a student in the third and last quarter of a course
in general physics. It solves two typc¢s of problems: 1) the rel-
ativistic equations for the collision of two particles and 2) the
transformation of coordinates between center-of-mass and labora-
tory frame. It is unnecessarily complicated by including three
dimensions and the possibility of conversion between mass and ki-
netic energy.

All participants in the introductory course were treated as
individuals and asked to create a program on their own (with con-
sultaticn and help, of course;. No manual was used, although a
few introductory FORTRAN IV sessions were held for those who had
no previous experience; in two one-hour sessions, I felt I could
get enough across for the student to write simple programs involv-
ing DO-loops, functions, data and printing. The chief virtue of
this method was that the novice students could choose a subject
which interested them, analyze it, program an extensive (for them)
calculation and make it work. The next step, if we carry on with
this program, would be to have them tackle a nontrivial calcula-
tion, one that could not be computed in a finite time with a slide
rule. The point in this effort is not in the quality of programs
created, but in the involvement of the student in the use of a
new, exciting, highly visible tool; one which many realize will
be as common to them as a slide rule. There is an excitement and
enthusiasm in solving problems of the relative difficulty and
length represented by some of these problems.

74




STUDENT MANUAL

The program, ATOM, described here solves the conservation
equations for the collision of two sub-atomic particles. The input
data consists of the mass, velocity and direction of motion of two
particles before their collision and of one particle after the col-
lision. The program then computes the mass, velccity and direc-
tion of travel of the fourth particle. The total initial momentum
of the two particles is then used to compute the transformation
of variables to a frame of reference ("center-of-momentum” frame)
where the total momentum of the system is zero.

The fundamental physical principle involved is the conserva-
tion of the relativistic momentum vector and the relativistic
energy in the collision._  For a single particle of rest mass my,
speed v and velocity v these quantities are defined by the
fundamental relativistic relations:

|
= my (1l - v2/c2)~”2 (relativistic mass)

> . e s
= mv (relativistic momentum)

W oy 3

= mc2 (relativistic energy)

which imply

EZ = p2c? + mjc*

relating energy, momentum and rest mass (c = speed of light).

For a two-particle system the conservation equations are
thus expressed as

-»> -> -»> >
P1 + p2 = P3 + Py
E1+E2=E3+E4

assuming that two particles, 3 and 4, recoil from the collision,

although they may not be of the same mass, individually or col-
lectively, as the original colliding particles, 1 and 2. This is

illustrated in Figure 1.

For ease of programming, it is necessary to "scale" the
variables appropriately; we shall do this by means of the follow-
ing substitutions:

\"/ M= m0c2 ; Yy = Y1 = V2

I
<
N
Q
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which also impl
Y E2 = P2 + M2

The input data to ATOM are eight values Xj = M;, My, M3, Vi,
V,, V3, ¢1, and 0; and the index I =1 for 1aboratory frame
of reference, or I = 2 £for center-cf-momentum frame of reference.
It is assumed that the direction of velocities and V determine
the x-axis, and, although the z-axis could have been determined by
requiring that it be in the plane of the x-axis and the recoil
velocities, the program was purposely written in a general three-
dimensional description. The direction angles, ¢ and 6 were
chosen as shown in Figure 1, and are assumed given in degrees.

Every quantity to be output by the program is stored as a
two~-dimensional array of form X{I,N) where I specifies the
frame of reference. The program starts by assigning storage space
to MASS, speed (VEL), magnitude of momentum (MOMENT) , (ENERGY, ¢

PHI), 0 (THETA), vector components of 3 (VELj23), Vi (VELys6) »
3, Py, etc. In some arrays an extra space is set aside as a con-

venient "working space.”

After specification of numerous FORMAT statements the program
stores input data in the appropriate places (statement #41), and
proceeds (#34) to compute momenta and energies for particles 1, 2,
3, and 4. After computing ¢; and 63 in radians, along with
the appropriate direction cosines, the components of 3 are cal-
culated (#707), and ﬁu is gound from the conservation of momen-
tum. y is computed from P, (#23), followed by V, (#24+1) and
f£inally, the rest mass is found (#24+3). The computation, for the
first frame of reference, is completed with the calculation of the
direction angles ¢3, 6z of the fourth particle, in degrees.

Following this, the program transforms to the alternate frame
of reference in ##702-800, essentially repeating the same computa-
tions as in the preceding paragraph, after which the stored values
are output (¥##36-40) in their appropriate formats. A listing of
ATOM ané sample output is shown on the following pages.
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PROGRAM ATOM
REAL MASs(2,5),VEL(2,4) ,MOMENT(2,5) ,ENERGY(2,5) ,PHI (2.2)
REAL THETA(2,2),P(2,6),V(2,6),X(8),T(3),GAM(4),RUTH(2)

1 FORMAT (I2,3(F9.3),3(F9.6),2(F9.3))
2 FORMAT (1HO,*INPUT DATA IS FROM LABORATORY FRAME OF REFERENCE*)
3 FORMAT {iHO,*INPUT DATA IS FROM CENTER OF MOMENTUM FRAME OF REFERE
XNCE*)
4 FORMAT (1HO,30X,*COLLISION AS SEEN FROM LABORATORY FRAME*, 13X, *COL
XLISION AS SEEN FROM CENTER OF MOMENTUM FRAME*)
5 FORMAT (1HO, 30X, 4 (*PARTICLE *,Il,2X,),3X,4 (*PARTICLE *,I2,2X))
6 FORMAT (1H ,10X,*MASS (MEV) *,7X,4(F9.,3,3X),*XX*,2X,4(F9.3,3X))
7 FORMAT (1H ,10X,*VELOCITY (X 1/C)*,4X,4(F9.3,3X),*XX*,62X,4 (F9.3,3X
X))
8 FORMAT (1H ,10X,*ENERGY (MEV) *,7X,4(F9.3,3X),*XX*,62X,4(F9.3,3X))
9 FORMAT (1H ,10X,*MOMENTUM (MEV/C)*,4X,4(F9.3,3X),*XX*,62X,4 (F9.3,3X
X))
10 FORMAT (1HO,1CX,*MOMENTUM*)
11 FORMAT (1H ,14X,*COMPONENTS*)
12 FORMAT (1H ,19X,*X*,10X,4(F9.3,3X),*XX*,2X,4(F9.3,3X))
13 FORMAT (1H ,19X,*Y*,10X,4(F9.3,3X),*XX*,2X,4 (F9.3,3X))
14 FORMAT {1H ,19X,*Z*,10X,4(F9.3,3X),*XX*,2X,4 (F9.3,3X))
15 FORMAT {1HO,10X,*VELOCITY*)
17 FORMAT (1H ,19X,*X*,10X,4 (F9.6,3X),*XX*,2X, 4 (F9.6, 3X))
18 FORMAT (1H ,19X,*Y*,10X,4(F9.6,3X) ,*XX*,2X,4 (F9.6, 3X))
19 FORMAT (1H ,19X,*Z*,10X,4(F9.6,3X),*XX*,2X,4 (F9.6, 3X))
20 FORMAT (1HO,10X,*DIRECTION OF%*)
50 FORMAT (1H ,10X,*TRAVEL*)
51 FORMAT (1H ,13X,*PHI (DEGREES)*,4X,4 (F9.3,3X),*XX*,2X,4(F9.3,3X))
52 FORMAT (1H ,14X,*THETA (DEGREES) *,4(F9.3,3X),*XX*,2X,4(F9.3,3X))
53 FORMAT (1HO,10X,*TOTAL MOMENTUM*,24X,F9.3,21X,*XX*,20X,F9.3)
; 54 FORMAT (1H ,10X,*TOTAL ENERGY *,24X,F9.3,21X,*XX*,20X,F9.3)
g 56 FORMAT (1HO)
: 58 FORMAT (1HO,20X,*VELOCITY OF CENTER OF MOMENTUM AS SEEN FROM LABOR
XATORY = *,F18.7,* TIMES C .*)
ZZ = 57.2957795
] Al = 0.0
: A2 = 90.0
1 57 A3 = 180.0
A4 = 0.0

READ(5,1) (1,(X(J),J=1,8))
GO TO(39,40),I

505 IF(X(4))861,862,862

861 A4 = 180.0

862 IF (X(5))41,860,860

860 A3 = 0.0

5 41 DO 21 J=1,3
MASS(I,J) = X(J)
21 VEL(I,J) = X(J+3)

PHI(I,1) = X(7)
THETA(I,1) = X(8)
34 DO 22 J = 1,3
GAM(J) = SQRT(1.0 - VEL(I,J)**2)
MOMENT (I,J) = (MASS(I,J) * VEL(I,J)) / GZM(J)
f 22 ENERGY (I,J) = MASS(I,J) / GAM(J)

MDA | L
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MOMENT (I,5) = MOMENT (I, ) + MOMENT (I,2)
ENERGY (I,5) = ENERGY(I,1l) + ENERGY(I,2)
ENERGY (I,4) = ENERGY(I,5) - ENERGY(I,3)
PHIRAD = PHI(I,1l) / ZZ

THETAR = THETA(I,1) / 22
T(1l) = SIN(PHIRAD) * COS (THETAR)
T(2) = SIN (PHIRAD) * SIN (THETAR])
T(3) = COS (PHIRAD)
Do 707 J = 1,3
V(I,J) = VEL(I,3)*T(J)
707 P(I,J) = MOMENT(I,3)*T(J)
P(I,4) = MOMENT(I,5) - P(I,1)
P(IIS) = - P(IIZ)
P(1,68) = - P(I,3)
M= 4
DO 23 J = 4,6
23 v(I,J) = P(I,J) / ENERGY {1, M)
SUM1 = 0.0
SUM2 = 0.0
DO 24 J = 4,6
SUM1 = SUM1 + V(I,J)**2
24 SUM2 = SUMZ + P(I,J)**2

VEL(I,4) =.SQRT (SUM1)
MOMENT (I,4) = SQRT (SUM2)
MASS (I, 4)=SQRT (ENERGY (I, 4) **2-MOMENT (I, 4)**2)
X = ACOS(V(I,6)/VEL(I,4))
PHI(I,2) = X * 22
XX = ATAN(V(I,5)/V(I,4))
THETA (I,2) = XX * 22
IF(V(I,5)) 701,702,702
701 THETA(I,2) = 360.0 - THETA(I,2)
702 IF (I.EQ.2) GO TO 26
IT = 2
DO 704 J=1,2
704 RUTH (J)= MASS(I,J)/GAM(J)
VCM= (RUTH (1) *VEL (I, 1)+RUTH(2) *VEL (I, 2) )/ (RUTH (1) +RUTH (2) )

GO TO 27
26 IT=1
VCM= -VEL({TI,2)
27 DO 28 J=1,4
28 MASS (II,J) = MASS(I,J)
DO 29 J=1,2
29 VEL(II,J)=(VEL(I,J)-VCM)/(1.0-VCM*VEL(I,J))

GAMMA=SQRT (1.0-VCM**2)
po 31 J=1,4,3
V7=1.0- VCM*V(I,J)
V(II,J) = (V(I,J)-VCH)/V7
K1=J+1
K2=J+2
DO 31 I~ K1,K2
31 v(II,n) = (v(I,L) * GAMMA) / V7
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SUMI = SUML + V(II,J)**2
K1 = J+3
32 SUM2 = SUM2 + V(II,K1)**2
VEL(II,3) SQRT (SUM1]
VEL (II,4) SQRT (SUM2)
DG 33 J=1,4
GAM(J) = SQRT(1.0 — VEL(II,J)**2)
ENERGY (II,J) = MASS{TII,J) / GAM(J)
33 MOMENT (II,J) = (MASS (L%,J) *  VEL(II,J) ) / GAM (J)

MOMENT (II,5) = MOMENT(II,1l) + MOMERT(II,2)
ENERGY{II,5) = ENERGY(II,1l) + ENERGY(II,Zj
M=3

DO 25 J=1,6
V7 =SQRT (1.0-V(II,J)**2)
IF (J.EQ.4) M=4

25 P(II,J) = (MASS(II,M) * V(IZ,J)) / V7
L7 = 3
K =3
N =2
N4 = 1

PO 36 J=1,2
IF(J.EQ.1) GO TO 727

3 L7 = 4

; XK=6

g N=>5

: N4 = 4

= 727 X = ACOS(V(II,K) / VEL(II,L7))
PHI(II,J) = X * ZZ

XX = ATAN(V(II,N) / V(II,N4) )
THETA (II,J) = XX*ZZ
IF (v(II,N)) 800,36,36
800 THETA (II,J) = 360.0 - THETA(II,J)
36 CONTINUE
WRITE (6, 4)
WRITE (6,5) ((r,71=1,4),(J3,3=1,4))
WRITE(6,6) ((MASS(I1,J),J=1,4),1I=1,2)
WRITE(6,7) ((VveL(1,J),J=1,4),1=1,2)
WRITE (6, 8) ((ENERGY (I,J),0=1,4),1=1,2)
WRITE(6,9) ( (MOMENT (1,J) ,J=1,4) ,I=1,2)
WRITE(6,10)
WRITE(6,11)
WRITE (6,12) (((MOMENT(J,I),I=1,2),P(J,1),P(J,4)),d=1,2)
WRITE(6,13) ((al,al,p(J,2),P(J,5),d=1,2))
WRITE(6,14) ((al,al,P(J,3),P(J,6),J=1,2))
WRITE(6,15)
WRITE (6,11)
WRITE(6,17) (((VeL(g,1),I1-1,2),v(J3,1),v(J3,4)),3=1,2)
WRITE(6 18) ((al,a1,v(J,2),v(J,5),3=1,2))
WRITE(6,19) ((al1,al1,v(J,3),v(J,6),J=1,2))
WRITE (6,20)
WRITE (6,50)
WRITE(6,51) ((pr4,A3, PHI(J,1),PHI(J,2),d=1,2))
WRITE (6,52) ((a2,A2, THETA(J,1l),THETA(J,2),J=1,2))




55
39
40

WRITE({6,53)
WRITE(6,54)
WRITE (5,58)
DO 55 J=1,5
WRITE (6, 56)
GO TO 57
WRITE (6,2)
GO TO 505
WRITE (6, 3)
GO TO 505
END
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( (MOMENT (J,5) ,J=1,
( (ENERGY (J,5) ,J=1,
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TEACHER'S GUIDE

Available for student use were a CDC 6400 and an IBM 1401,
neither one in a time-~sharing mode; the language was FORTRAN. dJob
cards were issued upon request by the instructor at the beginning
of the quarter, each good for one ten-second, ten-page run on the
6400 at a cost of $1. Students prepared, submitted and debugged
programs at their convenience. A "pep talk" on the importance and
relevance of computer calculations in science and engineering and
a selection of possible problems helps to involve the students and
to assure participation.

This program, ATOM, has run well in numerous tests, although
it is not safeguarded against zeros in denominators or imaginary
roots which could occur, because input is so free. In most cases,
we have restricted ourselves to elastic collisicas in a plane (6:,
= 0, Mg = M; or M3=M2).*

*Editor's Note: It might also prove of interest to compare
output from this program with that from the nonrelativistic pro-
gram MOMEN in D. T. Grimsrud's "Two Experiments" in Computer-Based
Physics: An Anthology, R. Blum, et al, published by the Commis-
sion on College Physics (1969). Since conservation computations
are performed in terms of momentum and energy, it should be possi-
ble to modify ATOM to include Compton scattering as a special case
for which, say, V; = 1 = V3. A logical branch in the case of in-
put V; = 1 would then compute E; = M; = hv = h¢/A and P; = E;
for the photon, omitting such undefined computations as #34-#22,
etc.
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INTRODUCTION

A discussion of high energy particle physics is an integral
part of most modern physics courses. Laboratory exercises using
bubble chamber photographs are commonly employed to amplify the
experimental side of these studies while questions of conservation
laws and allowed reactions are covered in class and problem as-
signments. It is often very difficult for a student to capture
the true flavor of this field from classroom treatments alone.
Can a student be led to discover, or at least to test, the con-
servation laws as an active research participant? Is there a way
for him to build the particle spectrum as a result of his own
ideas and imagination?

The computer-based laboratory exercise presented here is a
first attempt to answer these questions. In this exercise the
student is asked to imagine himself as a theoretical physicist who
suggests experiments to a large accelerator laboratory. The gen-
eral idea is to allow the student to predict high energy particle
reactions and to test his predictions by "experiments"” carried out
in the computer-simulated accelerator laboratory.

This laboratory exercise has been used during one term in a
pre-calculus course for freshmen, mostly prospective physics and
mathematics majors, called Introductory Modern Physics.* Since
the classroom discussion of the concepts involved in the laborato-
ry exercise did not come until the last week in the term, these
students were really given an opportunity to experience life as it
confronts the working physicist. Some took the exercise as a
challenge and only went to the literature after exhausting their
ingenuity and understanding. Others began by reading about the
field and then proceeded to test and verify their understanding.
Either approach seemed rewz2rding and succeeded in getting the stu-
dents to study the field with real enthusiasm. The only computer-
related skill required of the students for this exercise was card
punching. As used in this course the computer experiments by the
students were carried out during a six week period, so a fast turn-
around time was not essential. The computer used by the class was
an IBM 1130 operated in a hands-on, open shop where the students
could either submit jobs for batch processing or operate the com-

puter themselves.

A revised version of the "Student Manual" that was us=d by
38 students in the fall of 1968 is presented in the next section
which will both illustrate the flavor of the exercise and give the

*Tnterested parties may write the author to request further
information about this unique covurse.
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reader an introduction from the user's point of view. The "Teach-
er's Guide” which follows it contains more detailed information
about the simulation program and its use by students and concludes
with the data storage techniques used with the IBM 1130 <ystem, a
listing of the particles and reactions contained in the simulation
and complete program listings.




STUDENT MANUAL

Introduction

Ore of the most interesting fields of contemporary physics
is particle physi¢s, sometimes called "high energy" ohysics, be-
caus@ the partifles invoived in the experiments have very high
kinetic energies. The reactions take place in the GeV (109 eV)
region and above, whereas chemical reactions involve energies on
t- 2 order of one eV or so.

Now the question comes to mind, "How can those of us at a
liberal arts college, without access to a high energy accelerator,
get some firsthand knowledge of this field?" 1In our course on
modern physics we attempt to attack this problem by including two
experiments related to this field. One of these has become an
old standard in the course, the analysis of some actual bubble
chafiber photcgraphs.* A rather extensive write-up is available
for that experiment and you should read that write-up before pro-
ceeding with this new experiment. It is not necessary for you to
have actually worked on the bubble chamber photographs before
attemptinag this new project; but, it might make things clearer if
you have.

The new experiment, the subject of this write-up, requires
that you think of yourself as a theoretical "high energy® physi-
cist. You are workiiig at one of the large accelerator laborator-
ies where you help plan new experimental projects and try to make
sense out of the experimental results. This allows you to ponder
the results of experiments, to ask the questions that lead to new
experirents and, hopefully, to discover the answers to your gques-
tions.

You might well ask, "What facilities do I have at my command?"
The answer to that is, "An entire accelerator laboratory--acceler-
ator, hydrogen bubble chamber, technical staff, and a crew to scan
the bubble chamber pictures." It will be up to you to decide on
the type of particle you would like to fire into the bubble cham-
ber. You will also choose the kinetic energy of this incident
particle. And, finally, you get to instruct the scanners to search
for up to three types of resulting particles by simply specifying
the masses of these "predicted” particles. This is all accom-
plished by letting the computer simulate the entire operation of
the accelerator laboratory.

By studying the types of reactions that can, and do, take
place at very high energies, a list of "particles" was selected as
being representative of those actually known to physicists. The
initial cornfiguration of the simulation allows only protons to be

*See Welch Catalog, No. 2171--Bubble Chamber Photo Analysis
Apparatus.
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the target particles (a liquid hydrogen bubble chamber, remember?).
Initially, the incident projectile particles must be =#~ mesons,
and as wcrk progresses on the simulation other projectile parti-
cles will become available; but you have to discover them first
using the #~ mesons. The work involved here is not just getting
the data--the laboratory supporting personnel do that for you--
but rather in tryina to make some sense out of it and planning new

experiments.

If you want to know more about the workings of an actual ac-
celerator and how a 7~ + p reactiosn comes about, you should read
the write-up for the bubble chamber photo analysis experiment. If
you would like to know more about the particles you will "discov-
er" during the course of your experiments, you should read Chapter
10 in Beiser's paperback Modern Physics; An Introductory Survey,
Addison-Wesley, Reading, Mass. (1968), and from there head for the
library to the latest books on nuclear physics and particle phys-
ics, and to Scientific American articies. A list of possible
references may be found in the book by M. S. Livingston, Particle
Physics, McGraw-Hill, New York, N.Y. (1968), pp. 222-224. If you
want suggestions for further study, please ask your instructor.

As a theoretical physicist, what parameters do you think are
necessary to specify a particle, that is, to differentiate it from
another particle? Suppose you are told there exist two particles
with rest mass of about 939 MeV/c?, (c = speed of light) one with
positive charge and a second with no charge. At the present time,
physicists refer to these two particles as two "charge states of
the nucleon." You already know these particles by the names pro-
ton and neutron. In addition we know of the anti-nucleon states,
the anti-proton and anti-neutron. We thus use charge as one means
for differentiating particles. As you read about the elementary
particles, you will discover many other ways for differentiating
between them, but keep in mind that particles of equal mass but
different charge may very well be simply different charge states
of the same "fundarental particle" like the "nucleon."

As you read Chapter 10 in Beiser's book, you will become
aware that the lifetime of the particles is an important parameter.
Reactions that are "allowed" to take place by a strong interaction
will happen in the short time it takes for two particles to pass
one another while moving at a relative speed of approximately c.
If we take the diameter of a nucleon (proton or neutron) to be
about 10-13cm (one "fermi") this time comes out to be about 10-2"%
seconds. However, Mother Nature hasn't "allowed" everything to
happen that fast. In nuclear physics some reactions are called
"weak" interactions and they are found to take place about 101
times slower than the stronyg interactions. The time associated
with weak interactions is thus about 10710 secocnds. You will find
both strong and weak interactions going on as indicated by the
lifetimes.

In the procedure section you will be guided thrcugh a trial
run. It is suggested that you have the computer do this run for
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you as the first step in using the "laboratorv." The laboratory
will be at your disposal during the remainder of the term so you
may feel free to do experiments any time. It is intended that
this exercise occupy at least one week's worth of laboratory time.
Be sure to read the note at the end about "publishing” your re-
sults.

Experimental Procedure

For each experimental run you must supply the accelerator
staff with the identity of your projectiie particle (a @ meson
initially) by specifying its mass and charge (137 MeV/c? and -e
for =~). Then you must specify the laboratory kinetic energy of
this incident particle in MeV; 0-25C00 MeV will cover the entire
range of simulated reactions. Only reactions with threshold en-
ergies within 10% of your specified energy will be detected.

Finally, once you decide on a projectile particle, you must
tell the picture scanners what you are looking for. That is, you
must "predict" the masses of up to three particles you expect to
have produced. The overwhelming number of pictures obtained from
an experimental run prohibits a complete analysis, so the photo
scanning process is programmed to reject any reactions that do not
result in one of the three particle masses specified by you. The
scanners can determine masses within % 5%.

As a theoretician you are interested in the results of the
experiments. When the scanning crew finds a particle with a mass
specified by you, they will record the data and give you a run-
down of the significant reactions that occur during the experiment.
For example, suppose the 1w~ + p collision produces two parti-
cles: (1) mass Mj; and charge Q;, and (2) mass M, and charge
Q2. You will be told these masses and charges. Suppose furthex
that particle (2) decayed after 10~8 seconds into two other par-
ticles that also appeared on the photograph. You will also be
told the masses and charges for these decay products and the life-
time of the parent particle (2). Since these are chreshold reac-
tions -the reaction products are assumed stationary in center-of-
mass coordinates.

In order to get down to earth let us consider the = + p
reaction as a trial run. Do you suppose there exists a particie
with half the nucleon mass? To be specific, we want to find out
whether the reaction 1~ + p - N + M(500) exists. Here we have
written N to stand for a nucleon (regardless of its charge state;
i.e., either a neutron or proton) and M(500} stands for the un-
discovered particle with rest mass around 500 MeV/c?. The in-
crease in mass-energy involved in producing the 500 MeV/c? parti-
cle is the difference between the new mass and the pion mass,
500-137 = 363 MeV/c2. But we also know that some of the pion kine-
tic energy is effectively "lost" as center-of-mass energy and is
not available for appearance as rest mass. Using the conserva-
tion of momentum and total energy we can calculate the threshold
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kipetic energy E;} required for the pion to be able to produce
this new particle. The result of this derivation is

E¢p (threshold kinetic energy) = QM/2m, (Eq. 1)
where: Q = (initial total rest mass - final total res* mass)c?

y M = (total final plus initial rest masses)

my,= (rest mass of target particle)
To be specific, Q = (939 + 137 - 939 - 500) MeV = 363 MeV
M= (939 + 500 + 939 + 137) MeV/c? = 2515 MeV/c?
m,= 939 MeV/c2
Carry out the arithmetic and you predict a threshold kinetic ener-
gy of about 485 MeV as required for the incident pion. Iet's pick
500 MeV as a round number recalling that our scanners give us a
5% tolerance on mass determinations.

The FORTRAN READ statement for this program is the following:

READ (2,201) M1, IQl, KE, MOUT(1l), MOUT(2), MOUT(3)
201 FORMAT (615)

For input data we specify, as integers, the incident particle mass,
M1, its charge in units of e, IQl, its kinetic energy, and then
up to three mass values MOUT( ) we want the scanners tc 1ook for.
If we want the scanners to look for the new 500 MeV particle, a
nucleon and a pion, the data card would take the following form:

3 TEATORTTIE WSy Tn X WA

137 -1 500 560 932 137

4] In addition we need some XEQ cards and cards to define some stor-
age areas. The cards required to call the program and to specify
our data are as follows:

SATSATR AR LY L
X

. Columns: 5 1¢ 15 20 25 30 35 40
Card 1: // JCB
Card 2: // XEQ PHYHE 01
Card 3: *FILES (10,PARTS), (1,REAC1), (2,REAC2)
card 4: 137 -1 500 500 93939 137
Card 5: blank

The computer will digest these five cards and print the following
messages:
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INITIAL EXPERIMENTAL CONDITIONS
INCIDENT PARTICLE MASS= 137 MEV/C2 WITH CHARGE= -1

KINETIC ENERGY OF PARTICLE BEAM = 500 MEV
SCAN IS FOR MASSES 500, 939, AND 137 MEV/C2

** pI MESONS ARE TOO NUMEROUS FOR A SCANNING REPORT
THE SCANNERS ARE IGNORING YOUR REQUEST

SCAN HAS DETECTED NO PARTICLES WHICH SATISFY YOUR CONDITIONS.

As you can read, the computer will verify that it understands your
specified initial conditions and then repeats your request for the
scanning masses. In this case the scanners will not look for pi

mesons (MOUT(3)) because they are simply too numerous, and finally
we are told that no reaction of the kind we sought has been found.

Now here is the first opportunity to make an educated guess.
Suppose you have a theory that some sort of particle exists which
is really a collection (molecule?) of five bound pions. You might
guess its mass to be 5x137=685 MeV/c2. 1If you use this mass to
calculate the laboratory threshold kinetic energy (Eq. 1) you pre-
dict about 790 MeV as the required energy for the incident pion.
We can now do a new experiment simply bv replacing Card 4 by a new
card.

Card 4: 137 -1 800 500 939 685

where the incident pions have a kinetic energy of 800 MeV and the
scan will be made for particles of mass 500, 939, and 685 MeV/c?2.
The program yields the output shown on the next page (Figure 1).

Surprise! There is a particle with about half the mass of a
nucleon. But, the most surprising part seems to be that it is not
produced as simply as we had supposed. We had to supply more en-
erqgy, apparently enough so that a new heavier particle could be
produced to accompany our 496 MeV particle. Why didn't the neu-
tral 496 MeV particle appear in the first experiment when there
was certainly enough eneragy? Is there a conservation law acting
here that prevents the production of the neutral 496 MeV particle
in conjunction with, say, a neutron? Are there also charged par-
ticles with the masses 1115 MeV/c? and 496 MeV/c?? We sEould note
that no 685 MeV/c2 particle was found. Does that mean it doesn’t
exist or that we simply don't know how to produce it?

If you look at the decays of these two new particles you find
that the 1115 MeV particle decays in 2x10710 seconds into either
a proton and pi-minus meson or into a neutron and pi-zero meson.

A weak interaction? What prevents a fast decay? Now look at the
496 MeV particle's decay habits. Nothing but puzzles! It seems
to be a Jekyll-and-Hyde particle. Is it one particle with two
different decay paths, or two particles with the same mass and
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INITIAL EXPERIMENTAI. CONDITIONS

INCIDENT PARTICLE

KINETIC ENERGY OF PARTICLE BEAM =

SCAN IS FOR MASSE
SUCCESS.

PARTICLE (1) CG=
PARTICLE (2) CG=

DECAY PRODUCTS OF
DECAY TIME =

DECAY TIME =

DECAY PRODUCTS OF
DECAY TIME =

DECAY TIME =

DECAY TIME =

DECAY TIME =

MASS= 137 MEV/C2 WITH CHARGE= -1

S 500,

RESULTS FOLLOW.

0 MASS=
0 MASS=

1115
496

939, AND

800 MEV

685 MEV/C2

PARTICLE (1) FOLLOW.

0.20E-09

0.20E-09

CG
CG

CG
CG

1
-1

0
0

MASS
MASS

MASS
MASS

PARTICLE {2) FOLLOW.

0.70E-10

0.70E-10

0.40E-07

0.40E-07
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charge? It either decays into two pions with a lifetime of 0.7

x10~10 seconds or it decays into three pions with a longer life-
time of 4x10”8 seconds. What is going on here?

Conclusion

Now you are on your own. It is hoped that you will come to
appreciate the methods, joys, and tribulations of the theoretical
physicist and that you will learn about the strange world <f high
energy physics, while having fun doing it. You should not sit in
the computer room grinding out lots of numbers; instead, try to
think up experiments that will provide you with answers to your
questions. Keep track of your hypotheses, experiments, and mis-
cellaneous thoughts in your lab notebook. The reactions avail-
able to you do not exhaust all of those possible in natvure, but
every effort has gone into providing a representative sample.

If you are lucky enough to discover new particles, you should
"publish" your results on the bulletin board. Your instructors
have started a "publication sheet" with their discoveries; you can
add your results to it, unless someone else publishes first. How-
ever, verify ideas carefully before "publication," and beware the
occupational disease of R.I.P. (Rushed Into Print).

To communicate your guesses or questions to other class mem-
bers, simply write a note and stick it on the bulletir board. It
is hoped that we may develop a small community of researchers, all
working and sharing results in their common goal of understanding

nature.




TEACHER'S GUIDE

Many simulations are designed for real time interaction be-
tween the user and the simulator. This acceleration laboratory
simulation is not. Rather, it is intended that a student will
try experimental runs primarily as tests for his ideas and will
spend some period of time between these runs thinking about the
results and planning new experiments. In order to encourage this
and to discourage a shotgun approach the program presented here
reads only one experimental specification per program execution,
hence, it is readily usable with nearly all computer systems,
time-shared or batch processed. In some cases there may be cost
considerations, a desire for short turnaround times, or limita-
tions on the number of computer runs allowed by any individual or
class per day. In situations like these, being able to read more
than one experimental specification per computer job could be
easily achieved through a minor modification of the source pro-
gram, such as relying upon an unsatisfied READ statement or a
test for negative M1 to terminate the program.

Our students were encouraged to “"publish" their discoveries
by filling in a chart that was tacked on a bulletin board outside
the lecturc room. The chart included columns for particle charge,
mass, lifetime, decay paths, and production technique. Additional
space on the bulletin board was reserved for theoretical "papers"”
which consisted of short notes (by both students and instructor)
asking questions about the discoveries and pointing out special
properties. The students who worked hardest on the experiments
quickly discovered many of the easy particles and the other stu-
dents required reassurance that not everything had been discover-
ed. One pair of students discovered that the K~ was available
for use as an additional incident particle before this fact was
revealed to the class by the instructor. Once the X~ became
available many new reactions were possible and the late starters
were able to get into the act.

It would be a mistake to expect students to arrive at a com-
plete understanding of all the variations possible in this exer-
cise without a fair amount of outside help. In addition to being
encouraged to share their results and ideas with each other, our
students were expected to use other references, the two primary
ones being the book by Livingston, Particle Physics, McGraw-Hill,
New York, N.Y. (1968) and the article by Chew, Gell-Man, and Ro-
senfeld, Scientific American (February 1964).*

s *See Editor's Note on following page.
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An opportunity for classroom discussion is essential for
collecting loose ends. Coming after the experimentation, such a
discussion can draw examples from the students' own "published"
results and can point out the limitations in the simulation
program. Furthermore, having prior information about the baryon
spectrum did not seem to dampen enthusiasm among our students.
Indeed, a theoretical prediction that a certain particle cannot
be produced by either the 7w~ + p or the K~ + p reaction can
be of more value than the publication of an accidental discovery
of some new particle.

This simulation exercise was developed for use in the lab-
oratory portion of an introductory course in modern physics.
However, there do seem to be other possible uses for this pro-
gram. For example, if a time~-shared terminal could be made
available in the classroom, such a simulation program might be
very useful in a discussion session. Another possibility might
be a problem set where the students could use the simulation in
response to leading gquestions or as a check on their answers.

Editor's Note: To obtain the formula Eth = QM/2m, given
in the Student Manual, recall that for an assembly of particles
the quantity

(total energy)?2 - (total momentum)2c?

is invariant with respect to Lorentz transformations and that en-
ergy is conserved in the collision. In the center-of-mass system
the total momentum is, by definition, zero; and the energy before
collision, E', equals E", the energy after collision. However,
from the invariant, E' and E" are related to laboratory obser-
vations as follows:

Efz = {z?

'i + m, + E*ﬂ"}_}z - p1202 H E" = MN"

where M" is the rest mass of the reaction products and p; the
relativistic momentum of the projectile particie

p12c2 = (m; + Eth)? - m2? = 2mE¢p + Eth?

Making the appropriate substitutions in the equation E'2= E"2

yields
M"2 - (m; + mp)2 = 2Ethmp

and factoring the left-hand side of the equation as the differ-
ence of two squares leads directly to the desired relationship.

This method is discussed, with examples, in Appendix A of
Introduction to Elementary Particles, by W. S. C. Williams, Aca-
Jdemic Press, New York, N.Y. (1961). The result can alsc be de-
rived by straightforward but tedious calculations from conserva-
tion of energy and momentum. These can be found worked out in
detail in The Atomic Nucleus, by R. D. Evans, McGraw-Hill, New
York, N.Y. (1955), Chapter 12.
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Many of the limitations contained in the present program are
artificial and were included in order to reduce the development
and programming time or to limit the student's freedom. For ex-
ample:

1. The only particles available in the program are tne
baryons up to mass 1688 MeV/c?, the 7 and K mesons,
and the muons.

2. The particle manifold masses are combined. For ex-
ample, both the proton and neutron appear as having a
mass 939 MeV/c? and all the w-mesons appear with mass
137 MeV/c2,

3. Only reactions having thresholds within 10% of the
specified threshold energy are detected. This pre-
vents picking a high energy and learning about all the
reactions with lower thresholds in a single experiment.

4. No possibility has been included for reactions pro-
duced by secondary particles. Only =~ + p and K-~
+ p reactions and the decays of their resulting parti-
cles are included.

5. No information on the relative frequency of the vari-
ous reactions and decays 1is included.

6. Electrons, gamma rays and neutrinos are ignored as
being undetected.

A good case can be made for eliminating many of these limitations
in future versions of the simulation, particularly if it is to be
used by advanced students. It would not be difficult to include
more members of the meson family or to increase the energy range
and number of available reactions. The decay schemes could be
greatly improved if electrons and gamma rays were included in the
particle list.

The Program

The basic operation of the program is as folliows:

1. TInput data is read and a list (Table 1) of 33 particles
is scanned to see if any of the given masses correspond to items
on the list. Each item is indexed and the identifying indices of
legitimate particle masses stored for later reference.

2. The program then scans a list (Table 2) of 24 possible
- + p or 32 possible K~ + p reactions, depending cn M1 and
the threshold energy to determine which, if any, could give rise
to the anticipated particles.

3. If an otherwise eligible reaction from Table 2 is found
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not to contain the anticipated particles, then Table 1 is checked
again to see if they might not be decay products of the reaction

being examined. If successful, thée program writes the result be-
iore returning to the next eligible reaction, if any, in Table 2.

As an illustration of how to read the particle table, Table
1 on the following page, we shall consider particle 21 which has
a mass of 1405 MeV/c2, charge 0, mean life 0.5x10-23 seconds.
The 12 numbers following the lifetime are the decay paths record-
ed in four groups of three particles. It follows that particle
21 has three decay paths (zeros have no meaning) into the parti-
cle pairs (9,-1), (10,2), and (11,1). These integers refer to
other particle numbers and may be looked up in the particle table.
Negative particle numbers indicate the anti-particle. From the
last column of Table 1 we can identify the particle as a A0%;
its three decay paths are (:z+,r”), (2£0,x9), and (z—,=h).

In Table 2 (page following Table 1) the reactions are listed
in order of increasing threshold energy. Reaction products are
given by particle numbers as found in the particle table. For
example, consider reactions 13 and 14 having a threshold energy of
219 MeV. These produce particles (7,4,2) and (7,5,2), which may
be identified as being (n,K;?,%%) and (n,k,%,79).

This simulation program was developed for use with the IBM
1130 version 2 disk monitor system. In this system, the above
particle table and reaction lists were stored as DATA FILES on
the system disk, using the auxiliary program listed in Figure 2.

Some readers may not be familiar with the DEFINE FILE state-
ment or with the Disk WRITE(NUM'J) XXX statement which appears as
statement numbers 1 and 2 in this program. The DEFINE FILE
statement gives information allowing the compiler to set up a
data file on the disk. The WRITE( ' ) statement is an instruc-
tion to "write on disk.” Further details may be found in Usin
the IBM 1130, by A. Bork, Addison-Wesley, Reading, Mass. (1968).

The simulation program itself was also stored on the disk
-and could be called by the students using the short five-card
deck listed in the Student Manual. This program was stored under
the name PHYHE (Physics High Energy), hence the presence of that
name on the program execute card (// XEQ). The third card of
that deck is used to relate files numbered 10, 1, and 2 in the
program READ( ' ) statements to the names PARTS, REACl, and REAC2
that were given to the particle table and reaction lists when
stored on the disk. The fourth card contains the input data, and
the last blank card simply insures that the card reader will read
the fourth card if no jobs follow this one.

The flow chart on page 100 is a rough presentation of the
simulation logic. It may be of some help to persons who attempt
a detailed understanding of the program, but it is included here
primarily to illustrate the gross program operation.
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DEFINE FILE 10(33,16,U,NEXT),1(24,4,U,NREC),2(32,4,U,NREC)
DIMENSION NOS(3,4),IP(3)
WRITE (3,300)
po 1 J=1,33
READ (2,201)M,IQ,T,NOS
WRITE (3,301) J,M,IQ,T,NOS
1 WRITE (10'J)M,IQ,T,NOS
MAXR = 24
NUGM = 1
WRITE (3,303)
11 DO 2 J=1,MAXR
READ (2,202)KE,IP
WRITE (3,302) J,KE,IP
2 WRITE (NUM'J)KE,IP
NUM = NUM+1
GO TO (99,3,99),NUM
3 MAXR = 32
WRITE (3,303)
GO TO 11
99 CALL EXIT
201 FORMAT (2I5,E5.0,12I5)
202 FORMAT (41I5)
300 FORMAT ('l PART MASS CHG LIFE'9X,'DECAY PRODUCT PARTICLE NUMBERS
"1' 7 ° ' NUM TIME'12X, " GROUPS OF THREE'/ )
301 FORMAT (' 'I4,16,I5,E10.2,4(I6,214))
302 FORMAT (I5,I9,5X,3I5)
303 FORMAT ('l REAC THRESH RESULTING' /
1 ' NUM ENERGY PARTICLES')
END

Figure 2




\ READ EXPERIMENTAL CONDITIONS /

INITIALIZE PARAMETERS I

STEP THROUGH
REACTION LIST

CHECK THRESHOLD ENERGIES
KEY2 = 1

ARE
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EXIT ’

REACTION
PRODUCTS IN

"SUCCESS"

CHECK DECAY PRODUCTS
FOR

EACH REACTION PRODUCT

g |

Y

K |

COLLECT INFORMATION
ON REACTION PRODUCTS

]

WRITE INFORMATION
ON REACTION PRODUCTS

Y

COLLECT INFORMATION
ON DECAY PRODUCTS

Yy

WRITE INFORMATION
ON DECAY PRODUCTS

KEY?2

SO0 CONTINUE
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The program PHYHE uses a short subroutine called BETWN which

simply decides whether a number is below, within, or above some
upper and lower limits. The listings for BETWN and PHYHE follow.

U SV V)

SUBROUTINE BETWN (J.X,L,M)
SUBROUTINE BETWN CHECKS WHETHER VALUE OF VARIABLE J LIES
BETWEEN VALUES OF VARIABLES K AND L.
M=1

IF(J-K)SI 3,2

IF(i-J) 4,3,3

M=2

GO TO 5

M=3

RETURN

END

Program: PHYHE

12

DEFINE FIIE 10(33,16,U,NEXT),1(24,4,U,NREC),2(32,4,U,NREC)
DIMENSION MO(3),IQ(3),MINM(3),MAXM(3) ,LP2(3,4),LP3(3,3,4),
IPN(15) ,NPR(3),TM(3),JCS(3)

READ INITIAL EXPERIMENTAL CONDITIONS.

READ (2,201)M1,IQ1,KE, MO

WRITE (3,301)M1,IQ1,KE,MO

DO 3 I1I0UT=1,3

IF{MO(ICUT)-137) 3,2,3

MO(IOUT) = 0

CONTINUE

NR=24

IP=1

IF(137+(IQ1*M1)) 12,5,12

NR = 32

Ip = 2

IF(496+ (IQ1*M1)) 99,5,99

MINE = KE - (KE/10)

MAXE = KE

DO 6 J=1,3

MINM(Z) = MO(J) - (MO(J)/20)
MAXM(J) = MO(J) + (MO(J)/20)
INDX =1

FIND PARTICLES WHICH SATISFY SCAN CONDITIONS.
DO 8 NRC=1,33

READ (10 'NRC)M, IC,T,LP2

po 8 J=1,3

CALL BETWN (M,MINM(J) ,MAXM(J) ,KEY)

Go T0 (8,7,8),KEY

IPN (INDX)=NRC

INDX=INDX+1

CONTINUE
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MAXNO=INDX-1
C FIND REACTIONS PRODUCING THESE PARTICLES.
KEY1=1
DO 35 IB=1,NR
KEY2=1
READ (IP'IB)KET,NPR
CALL BETWN (KET, MINE,MAXE,KEY)
GO TO (35,21,36) ,KEY
DO 28 I1I1=1,MAXNO
DG 28 1IM=1,3
IF (IPN(IL)-IABS (NPR(IM)))28,25,28
25 IF(NPR(IM)) 27,28,27
C BRANCH AT 27 WHEN PARTICLE NO. IM OF REACTION IB IS IDENTIFIED AS
C ONE OF THOSE SOUGHT BY THE SCAN SPECIFICATIONS.
27 GO TO (41,42),KEY1
28 CONTINUE
WHEN NO PRIMARY PARTICLES SATISFY SCAN CONDITIONS CHECK TO
FIND WHETHER DECAY PARTICLES ARE DETECTED BY SCAN.
KEY2 = 3
DO 32 1IM=1,3
KEY3 = 1
NO = IABS (NPR (IM))
JCS (IM) = KPR (IM)/NO
IF (NO) 32,322,129
129 READ (10'10) M, 1C,T, ((LP3 (IM,MM,NN) ,MM=1,3) ,NN=1,4)
DG 32 IL=1,MAXNO
DO 32 NN=1,4
DO 132 M2=1,3
IF (IABS (LP3 (IM,M2,NN) ) -IPN (IL)) 132,30,132
C BRANCH AT 30 WHEN DECAY PRODUCT LP3 SATISFIES SCAN CONDITIONS.
30 GO TO (41,130,41),KEY2
130 KEY2 = 2
GO TO (230,330), KEY3
230 WRITE(3,305) IM
KEY3 = 2
C WRITE INFORMATION ON DECAY PARTICLES.
330 KJ=IM
T2=NN
GO TO 148
132 CONTINUE
32 CONTINUE
35 CONTINUE
36 GO TO (97,98) ,KEY1
WRITE INFORMATION ON PRIMARY PARTICLES FOR SATISFACTORY REACTION.
41 WRITE (3,302)
KEY1=2
42 KoM = 0
DO 44 K3=1,3
NO= IABS(NPR(KJ))
IF (NO) 44,44,242
242 READ(lO’NO)M,IC,T,((LPB(KJ,Il,IZ),Il=1,3),12=1,4)
TM(KJ) = T
JCS(KJ) = NPR(KJj/NO
JQ = IC*JCS (KJ)
KIM = X0M + 1
WRITE (3,304) KJ,JQ,M
44 CONTINUE

N
=i

“Qa
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L T T T SETE

C WRITE OUT DATA ON DECAYS OF EACH PRIMARY PARTICLE.
GO TO (143,130,130),KE¥X2
142 DO 50 KJ=1,KIM
WRITE (3,308) KJ
DO 50 I2=1,4
146 I1M=0
DO 49 I11=1,3
ICS = JCS(KJ)
MO (I1)=0
I0(I1)=0
NUM=LP3(XJ,I1l,I2)
IF (NUM) 46,49,47
46 ICS=NUM/IABS(NUM) * ICS
NUM=IABS (NUM)
47 READ (10'NUM)M, IC,T,LE2
IF (M) 49,49,48
48 MO(I1)=M
IQ(I1)=IC*ICS
IIM = I1
49 CONTINUE
IF (I1M)232,232,149
149 WRITE (3,306)TM(KJ), (IQ(11),MO(X1),I1=1,T1M)
232 GO TO(59,132),KEY2
50 CONTINUE
GO TO 35
97 WRITE (3,303)
98 CALL EXIT
99 WRITE (3,307)
CALL EXIT

201 FORMAT (615)
300 FORMAT ('0 ** PI MESONS ARE TOO NUMEROUS FOR A SCANNING REPORT'/

1'° THE SCANNERS ARE IGNORING YOUR REQUEST' )

301 FORMAT('1 INITIAL EXPERIMENTAL CONDITIONS'/
1’ INCIDENT PARTICLE MASS='I5,' MEV/C2 WITH CHARGE='I3/
2'0 KINETIC ENERGY OF PARTICLE BEAM ='I5,' MEV'/
3'0 SCaN IS FOR MASSES 'I5,','I5,', AND 'I5,' MEV/C2"')

302 FORMAT ('0 SUCCESS. RESULTS FOLLOW.'/)

303 FORMAT('0 SCAN HAS DETECTED NO PARTICLES WHICH SATISFY YOUR CONDI
1TIONS."')

304 FORMAT(' PARTICLE ('Il,') CG="13,"’ MASS="'I5)

305 FORMAT('0 DECAY PRODUCTS OF PARTICLE ('11,') FOLLGCW.')

306 FORMAT(' DECAY TIME = 'E9.2,' CG = 'I2,' MASS = 'I5/
131X,'CG = 'I2,' MASS = 'I5/31X,'CG = '12,' MASS = 'I5)

307 FORMAT ('6 SORRY.'/' THE LABORATORY IS NOT ABLE TO PERFORM THE
1REQUESTED EXPERIMENT.')
END
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INTRODUCTION

Every college physics department Jdesires the best and widest
range of equipment possibie for its students tc work with. For
departments with reasonably large enrollmerits this ideal may be
at least partially met. For departments with very small enroll-
ments, however, the purchase of many pieces of major equipment
cannoct be economically justified. One answer to this problem is
the simulation of physics instruments cn a digital computer. The
purpose of this paper is to describe how one such instrument, a
mass spectrometer, has been simulated on the Anderscn College IBM
1620 computer, and how it is being utilized by the physics depaxt-
ment.

The program, MSSiIM, is essentially a simulation of the Ealing
Small Mass Spectrometer as descriibed in Ealing Corporation's 1969
Teaching Catalog [alsc see J. W. Dewdney, American Journal of
Physics 28, 452 (1960)})}. Ions from a source, with some thermal
kinetic energy, are accelerated through a potential and deflected
in a magnetic field to a detector which measures the ion current.
The problem is to find the charge-to-mass ratio of the ions ob-
served, and from this informaticn the student tries to determine
the isctecpe which is observed.

The instructor inputs on punched cards the "sample” to be
analyzed by the modei. This sample consists of:

1. The mass of each isotope present.

2. The degree of ionization of each isotope.

3. The relative abundance of each possible ion.

He also inputs the value of the average initial kinetic energy of
the ions, and initializes the random number generator to provide

the "noise" current.

The remaining variables are then input by the student on the
console typewriter. These are:

1. Strength of the magnetic field.

2. Range of voltage to be swept.

3. Increment to be used in sweeping the voltage.

4. Width of the detector slit.

The computer calculates an ion current for each value of vol-
tage as it sweeps over the given range. The results are output on

punched cards showing the particular voltage and the ion current
associated with it. These cards may then be used as input to a

108




109

program which plots a graph of current versus voltage utilizing a
CALCOMP plotter.

Anderson College had no course in session during the semester
in which this program was written for which it would have been ap-
propriate to utilize this simulator, but this model will be used in
the Modern Physics laboratory to be offered Semester I, 1969-70.
Consequently, the Student Manual is not in its final form. In or-
der to test the model under classroom conditions, however, an upper
division student was engaged to perform two experiments with it.

The purpose of the first experiment was to study dispersion
and the results of using various detector slit widths. A plot of
the expected graph of mass versus accelerating voltage was made
and compared to the experimental analysis of a sample containing
933K3° and 7%K"!, all isotopes singly ionized. By varying the
slit width, different size detector current peaks were obtained
(see Teacher's Guide).

In the second experiment the student was to identify an un-
known element. An initial sweep was made to determine the loca-
tion of the different ion peaks using a narrow slit width, and
then localized sweeps were made of each peak using a wider slit
width to determine the relative abundance of the isotopes present.
The wider slit width was used in order to obtain flat-topped peaks
which were more accurate to measure than the more pointed peaks.
In this case the unknown was boron, and the sample consisted of
18% sin?ly-ionized B0, 1% doubly-ionized B0, 77% singly-ion-
ized B!l, and 4% doubly-ionized ~Bl!,

The results of these experiments proved to be quite satisfac-
tory for both student and instructor. The first experiment led
the student to a clearer picture of dispersion; the second gave
him a better understanding of the use of the mass spectrometer as
an analytical tool, as well as valuable experience in handling
mass spectrometer data. Also, the student seemed to enjoy the
experiment, especially the challenge of determining the unknown,
which he did successfully. These conclusions are based both on
the written report turned in by the student and conversations with

him.

The instructor was also satisfied with the outcome of the ex-
periment and felt that the goal of giving the student some feel
for using a mass spectrometer without a large monetary investment
was achieved. This experiment showed that it was feasible to use
this simulator within the normal three-hour period assigned to the
Advanced Physics Laboratory course at Anderson College. In terms
of actual computer time, these runs averaged four minutes per
graph to calculate and 13 minutes per graph to plot. It is expec-
ted that other experiments will be planned in the future to allow
for even greater utilization of this simulator.




STUDENT MANUAL

Theory

The mass spectrometer model to be simulated in our experi-
ment is based upon the apparatus shown in Figure 1. The ions are
produced in the ion source, and ejected with thermal kinetic en-
ergies ranging from 0 to 24AV electron volts. They are then
accelerated through a potential of V volts to the source slits,
which are assumed to be of infinitesimal width, where they are
collimated. They now have kinetic energy (neglecting thermal
energies)

yzmvz = qV (1)

where m,q,v are the mass, charge and speed of the ion. The ions
are then deflected in a magnetic field, B. All ions that experi-
ence the same deflection and are brought together at an image
point have the same momentum, given by:

mv = gBr (2)

where r = radius of curvature of the path followed by the ion.
These two conditions are simultaneously satisfied by ions with the
same charge-to-mass ratio, )

2V
%'= B2r2 (3)

thus the radius is given by:
r = ¥Y2mV/B2qg (4)

A radius of r = Rg will bring the ions into the center of the
exit slit, which has a width S. Ions passing through the exit
slit will produce a measured current Ig at the detector.

The focusing of such an instrument is not perfect as there is
an angular spread in the beam of any particular type of ion as it
leaves the magnetic field, due to thermal kinetic energy. As a re-
sult, the actual ion current reaching the detector is found by in-
tegrating over the width of the image slit, that is:

= Ig = J J(r) dr + I, (5)
Siit
, Width

where J(r) is the linear density dIg/dr of true ion current
over the slit width as a function of radius of curvature, and Ip
is the random "noise" current cf the system.

110




111

Exit Slit-+] Circular arc of radius r= Ro

Source Slits

Ion Source l l

Figure 1

In this model, the component of source current due to each
kind of ion present is determined by the following function:

BiQi 1

n
) BiQi
i=1

I; =

(6)

where Aj = relative amount of given ion in sample, Qi = relative
charge of that ion, I; = total amount of beam current leaving
source slit, 5x10-2 amperes.

The ions will have a few eV of kinetic energy before they
are accelerated. While this energy is best described by a one
dimensional Maxwellian distribution, a triangular function is as-
sumed in the model. It is further assumed that a dispersion of
energy is equivalent to a dispersion of accelerating potential.
By differentiating r in Eq. (4) with respect to V, it is pos-
sible to find the difference in 1, aAr, caused by a change, av,

in Vs
_ 2m 9& AV
== B ”’

The detector will measure the current caused by all ions
falling between Ry + S/2 and Ry - S/2. This component of de-
tector current is determined by the following:

Ro+S/2
Ig = [ J(r)ar (8)
Rg-S/2

For S<<Ry then Ry-S/2 2 r 2 Rg+S/2 gives radii of curvature
for which ions will enter the slit. The integral in Eq. (8) is
then evaluated for one of nine different cases, depending on which
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domains of definition of the equations of J(r) contain the limits
of the integral.

The total ion current passing through the slit (Ig) is found
by summing the contribution made by all jons:

n
Is = ) Isi (9)
i=1

The total detector current is then :
| I1g = Ig + In (10)

where In is a random noise componant.

! Simulation

parameters for the model fall in three categories as described
below:

1. Parameters set by the model:
a. Exit slit radius (R) = 4.00x10”2 meters.
b. Total beam current at source slit, Ig = 5.0x107° Amps.
c. The variation in kinetic energies of ions leaving the
ion source (assumed to have a triangular distribu-

tion).

1

2. Parameters set by the instructor:

a. The mass m; (in AMU), charge Qj (in electron units),
and relative quantity Aj of each kind of ion pro-
duced by the ion source.

b. The maximum variation in ion energy (4V) in electron
volts (eV).

c. The peak noise current at the detector, I,,.x

3. Parameters set by the student:
a. The value of B may be set at 1500 or 3000 gauss.
b. The upper and lower limits of acceleration voltage
v).
c. The increments in V for each measurement.
d. The exit slit width (S) in millimeters.

A message from the computer will advise you to enter these para-
meters from the typewriter console in the following format:

Columns 1-14, magnetic flux density, B
15~28, exit slit width, S
29-42, lower limit of accelerating voltage, VL
43-56, upper limit of accelerating voltage, VU
57-70, increment of accelerating voltage, VINC

The output of the model consists of pairs of measurements of
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acceleration potential V and corresponding detector current, Ig.
These values are printed out together with control cards for plot-
ting graphs of Iq versus V on the CALCOMP plotterx. These
graphs will appear as isolated peaks. For very small slit widths,
S, the peaks will be very sharp; for wide slits the peaks will be
flat-topped "mesas”" and the irregularities in the plateau of the
mesa will be a measure of the random noise current Ip which is to
be found in every electronic device. From this you may estimate
the random error in detector current measurements dve to noise.

Due *o the thermal motions of the ions leaving the source
there will be a dizpersion of values of Ig about the peak value
of V so that the peak whether sharp or flat will not be abrupt,
but will have sloping sides resembling the so-called "Gaussian
distribution.” To understand this remember that V only deter-
mines the curvature of the ion path, and not the actual number of
ions present.

Begin your experiment with an initial sweep using a Narrow
slit width, e.g., S = 0.2 mm, to determine the charge—to-mass
ratios of the different ions present. Then repeat the run with
localized sweeps and a wider slit width to determine the relative
masses and abundances of isotopes of a given element whose pre-
sence will be indicated in the initial run by the appearance of
closely-spaced sharp peaks. Hint: what do you know concerning
the Qi of isotopes of the same element? You can also determine
the component of source current due to each type of isotcpe pre-
sent from Eq. (6). Use of a wider slit will enable you to deter-
mine average peak values of (Ig),,= Is more accurately from the
mesas.

What ions do you think are present in your unknown source,
and in what abundances? (Your periodic table of the elements
should be of some assistance in deciding what you actually have
from the charge-to-mass ratios.)




TEACHER'S GUIDE

The ions may have a few eV of kinetic energy before they
are accelerated. While this energy is best described by a one
dimensional Maxwellian distribution, a triangular distribution
function f{e) for current is assumed here to simplify calcula-
tions. This function is shown in Figure 2 and described as fol-
lows:

fi(e) =0 ; e< 0, e> 2he (11)

I
£i(e) = 7oy

.
£i(e) = r[:».A—]

Note that the total area under fj must equal the total current
due to the i-th ion:

0 £ e £ he

-

Ae < e < 2bhe

-

1; = [ £5(e)de (12)

- 00

A £f: = I;/he
--:L.-. -:L--.-... Ii/Ae

°Y

Figure 2. Triangular thermal distribution.

A further simplifying assumption is made concerning the en-
ergy distribution: that a dispersion of energy (ae) 1is equiva-
lent to a dispersion of accelerating potential (AV), hence, from
Eg. (7) the difference in r, AR, caused by a change in kinetic

energy Ae = AV is )
R = |-2mi]% | AV 13
Bq;| [|2v72 )
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The detector will measure the current caused by all ions
falling between Rg+S/2 and Ry-S/2. This component of detec-
tor current is determined by the following:

Rg+S/2
Ig = [ J(x)ar (14)
Rg-S/2

where J(r) is the linear ion current density as a functicn of

r £for a given value of B and V. J(r) must, like f(e), be a
series of triangular functions Ji(r), each centered about its ap-
propriate mean radius RM as shown in Figure 3.

Ji (r) |

Figure 3. Triangular distribution for Jj (r).

It may be found, for one ion, by transforming the preceding equa-

tions to:
Ji(r) =0; r<RL, r > RU

I-
Ji(r) = —X_ (r-RL) ; RL < r

ToR) (15)

g

RM RU

-.
A
i
A

Jj(r) = T§%TZ(RU—r)

where .71
RL = [odV[%
qui.

2mi Vi, I\
e [ Y]

AR = 14 (RU-RL)
RM = Y (RU+RL)

RU

The integral given in Eq. (14) may be evaluated for nine
different cases, depending on the region of Figure 3 subtended by
the exit slit. That is, it depends on which parts of the distri-
bution function are actually involved in the evaluation of the
integral in Eg. (14). If we distinguish four regions, o, B, v, &,
as shown in Figure 3, we can classify these cases mathematically
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according to the regions where the edges of the slit fall. Thus,
the upper row of Table 1 specifies whether the rightmost edge of
the slit at r = Ryg+S/2 occurs in region «a, 8, y, or §. Sim-
ilarly, the leftmost column specifies the region in which the
leftmost edge of the slit at r = Rg-S/2 occurs, with the obvi-
ous restriction (X's in the Table) that it must occur only to the
left of the other edge of the slit. This makes a total of ten
separate cases in all, two of which are equivalernt in that there
is no overlap when the slit is either completely in region a Or
completely in region 6. In all cases, except when the distribu-
tion is completely contained by the slit (25), Igj < Ij. Mesas
will be observed for S > 24R.

I ppper limit — (RO+S/2)5RL5(R0+S/2)5RM5(R0+S/2)5RU5(R0+S/2)

lower limit

l a R Y 6
a: (Rg—-S/2)<RL (17) (20) (23) {25)
B: RL<(Rg-S/2)<RM X (18) {21) {24
vy: RM<(Rg-S/2)<RU X X (19) (22)
§: RU<(Rg-S/2) X X X (17)
N ek i

Table 1. Equations (in parentheses) applicabie
for each of nine cases of slit-distribution overlap.

The appropriate equations are as follows:

Isi = 0 (17)

Isi = 7%%)5—7 (Rg-RL) (18)

Isi = -(%;5—2 (RU-Rg) (19)

Igj = 7(—3—)2 [RL- (Rg+S/2) 12 (20)

Igi = Ii - 37%%72{[RU—(R0+S/2)]2 + [(Rg-S/2}~RL]Z2} (21)
Isi = yrphyz [RU-(Rg=5/2)]2 (22)

Iy = Ii - 57%%77 [RU- (Rg+5/2) 12 (23)

Isi = Ti - gypeyr [RL- (Ro=5/2)17 (24)

Igi = Ii (25)
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The total ion current passing through the slit (Is) is found
as follows:

n
Is = ) Isi (26)
i=1

thus summing the contribution made by all ions.
The total detector current I3 1is given by Eq. (17):

Id§ = Is + In (27)
where 1In 1s a random noise component. This component will vary
between 0 and Ipn,. and the distribution will be uniform. The
curves cobtained in the trial runs are shown in Figures 4(a), (b),
(c) and (d) (see pages 117 and 118).

Detailed program specifications for MSSIM are listed below

and on the following pages.

Program Specifications

A. Name

MSSIM - Mass Spectrometer SIMulator

B. Purpose

This program simulates the operation of a mass spectrometer
and generates corresponding output data.

D
1

C. System Flow Chart

INSTRUCTOR STUDENT
PARA,METERS 1 MSSIM <———— PARAMETERS |
R
| OUTPUT
DATA 497 TABULATED
DATA
_y| LISTING | )
GRAPH GRAFHICAL

DATA
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D. Control Devices

Control cards as follows:

++J0OB MONITOR B
F+XEQSMSSIM 3 (Col. 28)

E. Input Data

Instructor parameters:

Card 1 Columns 1-14 Initial XE of ions
15-28 Peak detector noise
29-34 Mumber of kinds of ions
35-39 4 digit seed for random
number generator
Cards 2 to N+1 Columns 1-14 Mass of ion
18 Degree of ionization
19-32 Relative abundance of ion
in percent

Student parameters:

k4

Columns 1-14 Flux density
15-28 Exit slit width
29-42 Lower limit acceleration voltage
43-56 Upper limit acceleration voltage
57-70 Accelerating voltage increment

See program listing and comments for complete description of
input data and formats.

F. Output Data

For each run, the following cards are punched:

1. One control card for GRAPH.

2. One data card for each measurement made in
the run. Each card contains the values of
accelerator voltage and corresponding de-
tector current.

3. Three data cards for GRAPH.

G. Non-Error Messages

1. Message: MASS SPECTROMETER SIMULATOR TRH.
Cause: Identification.
2. Message: TYPE 5 PARAMETERS USING F OR E FORMATS
BELOW HEADINGS B, S, VL, VU, VINC,
Canco: Need student parameters.
Response: Enter parameters.
3. Message: END OF RUN.
SS1 ON TO RE-ENTER STUDENT PARA,
SS2 ON TO RE-ENTER INST. PARA, OFF TO

EXIT.
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Cause: End of run.
Response: Set switch, push start.

H. Error Messages

1. Message: Parameter outside limits.
Cause: A student parameter is outside
allowed limits -
(a) B must equal 0.1500 cr 0.3000
(b) S must be less than 10”2, but positive
(c) 500 > VU > VL 2 O
(d) (VU-vL) 2 VINC

2. All standard Fortran errors are possible but should
not occur. Re-check input data.

I. Switch Settings

DISK| PARITY I/0 O'FLOW |1|2}3]4

ON
OFF X X X X *| x| X|*

*]1. See non-error message 3.
*2. See non-error message 3.
*4, Used to correct typing errors.

J. File Used

None.
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MASS SPECTROMETER SIMULATION PROGRAM

TABLE OF VARIABLES

RO CENTER RADIUS OF EXIT SLIT IN METERS

AS SOURCE BEAM CURRENT IN AMPS.

DV AVERAGE INITIAL KE OF IONS IN ELECTRON VOLTS
ANMAX PEAK DETECTOR NOUISE CURRENT IN AMPS.

N NUMBER OF DIFFERENT KINDS OF IONS

M SEED FOR RANDOM

AMU MASS OF ION IN AMU

Q ION CHARGE IN ELECTRON UNITS

AMT RELATIVE QUANTITY OF ION

B MAGNETIC FLUX DENSITY IN WEBERS/SQ METER
S EXIT SLIT WIDTH IN METERS

VL LOWER ACCELERATING VOLTAGE LIMIT

A"AY) UPPER ACCELERATING VOLTAGE LIMIT

VINC ACCELERATING VOLTAGE INCREMENT

DI DETECTOR CURRENT IN AMPS.

\'4 ACCELERATING POTENTIAL

CMR (I} CHARGE-TO-MASS-RATIO FOR ION (I) IN COULOMBS/KG

A{I) SOURCE CURRENT COMPONENT DUE TO ION (I)

DR DELTA R

CMU UPPER LIMIT OF CHARGE-MASS RATIO OF IONS HITTING SLIT
CML LOWER LIMIT OF CHARGE-MASS RATIO OF IONS HITTING SLIT

DIMENSICN A {20),CMR(20),RX(2),K(2)
EQUIVALENCE (RX (1) ,ROM), (RX(2) ,ROP)
FORMAT STMTS FOLLOW -
ID MSG
900 FORMAT (33HMASS SPECTROMETER SIMULATOR TRH)
INSTRUCTOR PARAMETER CARD
901 FORMAT(2E14.7,215)
ION DESCRIPTGR CARD
902 FORMAT(E14.7,3X,F1.0,E14.7)
STUDENT INPUT MSG
903 FORMAT(53HTYPE 5 PARAMETERS USING F OR E FORMATS BELOW HEADINGS/70
1H(----- B—=-=== ) (m==—-- S—=——=- ) (==——= VL—=~-- ) (m=—=- VU=-===- ) (==—-VINC
2--=~)) '
STUDENT PARAMETERS
904 FORMAT(5E14.7)
ERROR MSG
905 FORMAT (24HPARAMETER OUTSIDE LIMITS)
OUTPUT CARD
906 FORMAT(2E14.7)
TERMINAL MSG
907 FORMAT (10HEND OF RUN/74HSS1 ON TO RE-ENTER STUDENT PARA, SS2 ON TO
1 RE-ENTER INST. PARA, OFF TO EXIT)
GRAPH CONTROL CARD
508 FORMAT(18H 1 1 10. g. 1 4)
GRAPH EOD CARDS
909 FORAMT (6H-9999./18H ACCELERATOR VOLTS/17H DETECTOR AMPS.)

INITIALIZING SECTION
SET MODEL PARAMETERS
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TYPE 900

RO= 4.0E-02

BO= 1.5E-01

AS= 5.0E-09
C
C READ INSTRUCTOR PARAMETERS
C

1 READ 901,DV,ANMAX,N,M
AT=0.
DO 2 I=1,N
READ 902,AMU,Q,AMT
CMR(I)= ((1.609E-19)*Q)/(AMU*1.65979E-27)
A (I)=Q*AMT
2 AT=AT+A(I)
DO 3 I=1,N
3 A(1)=(A(I)*AS) /AT
C
C READ STUDENT PARAMETERS
C
4 TYPE 903
ACCEPT 904,B,S,VL,VU,VINC
IF (B-BO)5,7,5
5 IF(B-BO-BO)13,7,13
7 IF(s)13,13,8
8 IF(s-1.E-02)9,13,13
9 IF(VU-VL)13,13,10
10 IF (VL) 13,11,11
11 1F(VU-500.)12,12,13
12 IF((VU-VL)-VINC)13,14,14
13 TYPE 905
GO TO 4
14 ROP=RO+S/2.
ROM=RO-S/2.
V=VL

PUNCH GRAPH CONTROL CARD
PUNCH 908

MAIN PGM LOOP TO CALCULATE DI FCR EACH VALUE OF V

aQaQ o

15 DI=0
CML=(2.*V) / (ROP*B) **2
CMU=(2.* (V+2.*DV) ) / (ROM*B) **2
C CHECK EACH ION TO SEE IF IT CONTRIBUTES TO DI
Ju” DO 50 I=1,N
IF (CMR(I)-CMU)17,17,50
17 IF(CMR(I)-CML)50,18,18
C PROCESS ION IF IT CONTRIBUTES TO DI
18 RI~=SQRT((2.*V)/(B*B*CMR(I)))
RU=RL* (1.4+DV/V)
DR= (RU~RL) /2.
RM= (RU+RL) /2.
=A (I)/(2.*DR*DR)
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C DETERMINE WHICH EQUATION TO USE
DO 30 J=1,2
K(J)=0
IF (RX(3)-RL)30,30,21
21 IF (RX(J)-RM)22,22,23
22 K(J)=1
GO TO 30
23 IF(RX(J)-RU)24,24,25
24 K(J)=2
GO TO 30
25 K(J)=3
30 CONTINUE
J=1+K (1) +4*K(2)
Go TO0 (50,50,50,50,110,108,50,50,113,111,109,50,115,114,112,50),J
C FOLLOWING EQUATIONS CALCULATE CONTRIBUTION OF ION (I) TO DETECTOR CURRENT
108 C= F*2.* (RO-RL)*S
GO TO 31
109 C= F*2.* (RU-RO)*S
GO TO 31
110 C=F* (RL~ ROP )**2
GO TO 31
111 C=A(I)-F* ( (RU-ROP)**2+ (ROM-RL) **2)
GO TO 31
112 C= F*(RU- ROM )**2
GO TO 31
113 C= A(I)-F* (RU- ROP )**2
GO TO 31
114 C= A(I)-F*(RL- ROM )**2
GO TO 31
115 c=A(I)
31 DI=DI+C
50 CONTINUE
CALL RANDOM(R,M)
DI=DI+R*ANMAX
PUNCH 906,V,DI
V=V+VINC
IF (v-vU) 15, 15,60

END OF RUN ROUTINE

60 TYPE 907
PUNCH EOD GRAPH CARDS
PUNCH 909
PAUSE
IF (SENSE SWITCH 1)4,61
€1 IF(SENSE SWITCH 2)1,62
62 CALL EXIT
END

QO Qo
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INTRODUCTION

The material presented here has been taught to an audience
of biolcgy, earth science, chemistry and mathematics majors in an
introductory, noncalculus, service course in general physics. It
was also presented, in preliminary form, during the summer session
of 1968. At present, we are engaged in an extensive revision in
approach and content, and we have not yet chosen an appropriate
accompanying text.*

Roughly, the course will stress a discussion of the state of
2 system in general terms; conservation laws in terms of those
parameters of the description of a system which are constant, and
the interaction laws, in terms of those properties of a system
which change. Emphasis is placed on constructing models which
simulate the behavior of the actual physical system. The computer
was introduced into this course for two reascns: a) many cf these
people will not otherwise be exposed to computers; b) we can use
the computer as an aid in constructing and studying models. The
lab in this course is a three-hour lab, of which one hour is a
proklem session.

We have not made any attempt to explain the programs them-
selves to the students, since one essential aspect of the technique
is that the computer output be well-formatted and self-explanatory.
It is also necessary, for batch processing, to trap out as many in-
valid or erroneous input parameters as possible--with 150 students
any conceivable combination of invalid data is likely to occur.
These factors add considz=rable complications to the essential pro-
gram, and would make it quite difficult for students to follow.

We found no opposition to the "black-box" technique--a little
too much faith, in fact--and plan, in the future, to introduce a
lab in which we will look more closely at programming and the "Gar-
bage In--Garbage Out”® effect.

The problem illustrated in this paper originated in an experi-
ment to measure the decay of radioactive silver produced in a neu-
tron howitzer. The logistics of retrieving and distributing the
computer output makes a division of the material into three lab
periods a more workable arrangement, as explained in the Teacher's
Guide.

A third simulation program is included in the package, al-
though we did not incorporate it into the summer session course.
This program simulates the buildup to saturation of a source where

*Basic Physics, K. W. Ford, Blaisdel (1968) is used as a ref-
erence text.
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the production is at a constant rate. We have discussed the advis-
ability of incliuding a simulation of the two distinci: half-lives
that are present in the actual source. However, the shorter one is
rather difficult to measure experimentally, except as an excess of
counts at early times.

Based on experience with the summer school class, the experi-
mental writeups have been extensively rewritten in the interests of
clarity and fuller explanation. We are greatly pleased with the
results and have incorporated them into the new course at an early
stage--preceded only by the PSSC "analysis of an experiment" lab.

In fact, these simulation programs could be used in a more advanced
course with appropriate modifications of the lab writeups. Advanced
students might investigate such things as the effect of the "quan-
tized" throws versus the continuous decay, and could use the neutron
capture cross sections to develop a Monte Carlo calculation of the
activity buildup.

A word about philosophy for the General Physics course. A
computer is a Black Box to these students, and will probably always
be so for the majority. The aim is to convert a mysterious, omni-
potent Black Box into a useful Black Box. We have kept the calcula-
tions conceptually simple and, in each case, have required the stu-
dent to perform the same operations on a small sample as will be
done on larger samples by the computer. The programs themselves are
complicated, for reasons explained above; but we believe that
in order to get clear and comprerensible output, it is better to
accept a complex program which students will not understand, than
to write simple but inadequate programs (which most students still
will not understand). At some point in the course--either in the
lecture or lahoratory—--we will try to remcve some of the mystery
about programiing.

The following section, entitled "Student Manual,"” presents ma-
terial which was distributed to students participating in the two
experiments. It is here reproduced in a slightly condensed version.

We would like to acknowledge the cooperation of Dr. Rex Adel-
berger, who h2s been teaching the General Physics course this summer.




STUDENT MANUAL

Randomness and Radioactive Decay 1

As we have frequently done, we will be trying to invent a mod-
el of a physical system that satisfactorily displays some of the
properties of the real system. The process we will study is "radio-
active decay”.

1. Set up the Geiger counter (see instruction sheet) and
pick the measuring time and distance from the weak
scurce so that you get about two or three counts in an
interval. Take a series of 100 "rums" and record the
number of counts obtained in each. Plot a histogram
of the number of runs with 0 counts, 1 count, 2 counts,
etc. Calculate the average number of counts/run.

~. Txamine the first half of your series of runs and see
if you can detect any pattern in the number of counts/
run. If you see a pattern, cover the lower half of
the list and try to predict successive numbers on the
basis of the preceding ones.

Do you feel that you were any more successful than ycu
would have been if you had just guessed?

3. Compare the average number of counts/run from the last
half of your ~eries to that from the first half. To
what extent is the behavior of this system patternless?

The model we have of radioactive decay is roughly as follows:

The "source” consists of a large number =f discrete nuclei;
each of these nuclei is in a particular nuclear state. There is
another nuclear state to which the nucleus can make a tranmsition,
and still satisfy all of the conservation rules. For most radioac-
tive transitions, these two states correspond to nuclei of different
chemical elements. Conservation of Mass-Energy decrees that the
second state have a lower total Mass-Energy than the first; the ex-
cess Mass-Energy is necessary to trip the detector. Actually, we
should take this fact into account, since it implies that a nucleus
can undergo the transition only once. We will return to this point
in a later experiment.

One of the most fundamental features of our model of the nu-
clear particles is that all eramples of a particular nuclear state
are identical and indistinguishable. This follows from our defini-
tion of "state", since two sSystems in the same state are, by defin-
ition, indistinguishable. Now, if two systems are truly identical,
at first thought it would seem that the past and future histories
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of these systems must also be identical. That is, if we create a
number of identical nuclear states (or any other type of state) and
if one of them undergoes a spontaneous transition at scme time,
then they should all do it at the same time (or else they are not
identical). However, the source that you have measured was "manu-
factured” in a nuclear reactor during a relatively short period of
time. During this time, 211 of the nuclear systems were forced in-
tc their excited states; yet transitions, as you have observed to-
day, continue to occur at different times after production.

This raises the possibility that the nuclei are not all iden-
tical, but that each contains a "clock," set to go off at different
times. If this were the case, it might be possible to physically
separate those with short decay times from those with longer times.
This has not proved possible, nor is there any evidence that the
transition process is different in any respect for early or late
decays.

There is, however, one possibility which supports the idea of
identical nuclear states. Let us imagine that the transition time
of each nucleus is determined, not by a preset clock, but purely by
chance, and that the probability of each nucleus undergoing transi-
tion in a given period of time is identical to that of each other
nucleus.

An analogy immediately comes tc mind--a batch of identical
pennies. If we dump them on the floor, they each have a 5C-50
chance of landing "heads". The probability, we would say, is 1/2.
A batch of identical dice would each have a 1/6 probability of
showing, say a "5" on the upper face. Speaking figuratively, of
course, let us give each nucleus a die which it will toss at the
start of each time interval to decide whether or not to make a tran-
sition. The details of how the nucleus "decides" are not interest-
ing, if in fact that is even a valid question to ask. The point is
that it "decides" purely on the basis of chance, and that the chan-
ces are the same for each nucleus in the source.

For the moment, let us talk only about the probabilities, in
terms of throwing dice. We will imagine, then, each nucleus throw-
ing a die at the start of each counting interval. Each die has one
side on it which we call "heads"; the other sides are all "tails".
Let us also assume that the average number of decays you observed
was three. Suppose there were six nuclei throwing six-sided dice;
then we would expect one head, on the average, since the probable
outcome of 1/6 x 6 = 1. We would get three heads, on the average,
from 18 nuclei throwing six-sided dice (1/6 x 18 = 3); or 15 nuclei
throwing five-sided dice (1/5 x 15 = 3); or 3 x 1023 nuclei throw-
ing 1 x 1023-sided dice (1/1023 x 3 x 1023 = 3). We see that if
there are enough nuclei, the chances for any given nucleus can be
pretty small and still give a reasonable number of transitions.

4. Let us test the hypothesis by doing a dice-throwing
experiment. Since our dice have six sides, select a
number of dice which will give the same average num-
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ber of "heads" as the counts you obtained with the
counter. Throw your batch of dice a number of times
and make a histogram of the number of *imes 0 heads,
1 head, 2 heads, etc. show up; just as you did with
the radioactive source. Do these two sets of numbers
behave the same way? can you predict any particular
number of heads? Can you predict the average?

5. Repeat the experiment with pennies, again chosen to
give the same average (any problems?). Compare the
two histograms.

At this point, we must recognize a deficiency in our model.
We are using, say 18 six-sided dice to get an average of three, but
our source is using more like (3 x 1023) 1023-sided dice to get the
same average. The problem is, we will never get 20 heads (with on-
ly 18 dice), but it is certainly not out of the question if you have
3 x 1023 dice. To compare results we need to use more dice than we
can conveniently handle.

To help with this problem the 1130 computer has been programmed
to simulate the throwing of a large number of dice, each with N
number of sides. It will also plot out a histogram showing the ac-
tual number of times heads comes up as well as the inost likely num-
ber of times, based on a mathematical analysis of the probabilities.

6. Pick a number of dice (arcund 100) and a number of
sides which will give you the average value you mea-
sured. For exemple, if you wanted an average of
2.5, 40 sides would be correct: 100 x 1/40 = 2.5,
Ask the computer to throw this set of dice the same
number of times as you made counting runs. Plot
your data, and the computer's data orn the same
graph. From a comparison of the graphs, would you
say that the dice-throwing model gives an accurate
reproduction of the actual physical situation?

Comments on Random Numbers

Although a computer cannot actually roll dice¢, it can be pro-
grammed to produce patternless, or random, sequences of numbers, one
through six, for example, that simulate the random way in which the
numbers would appear on successive throws of a die. Not that it
will duplicate the string of numbers, of course, but the sequence
produced by the computer and by a real die have the following common
characteristics: a) the next number in the sequence cannot be
guessed from the preceding one more often than 1/6 of the time (on
the average); b) in a long sequence each of the six different num-
bers will appear about 1/6 of the time. The major difference be-
tween the two random processes is that if one starts the computer
cver again, it will give the same sequence as before. However, the
number N in your data will enable you to start the computer off
at a different place each time, thereby avoiding repetition of the
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previous sequence.

Roughly speaking, the method of generating random numbexrs in
the computer ccnsists of multiplying N by another number 2 and
retaining orly the rightmost (low-order) half of the digits in the
product as a new number M'. N' is then multiplied by 2 to gen-
erate a new number N" in the same way. Thus, if N = 13 and Z =
123, then Nz = 1599 and N' = 99; similarly, N" = 77. (Although
the example we have chosen only yields odd two-digit numbers, the
actual program in the computer is more sophisticated, yieiding both
odd and even numbers.)

Program Notes

The 1130 computer programs for the sequence of labs on radio-
active decay are as follows.

DITHR This program simulates the throwing of a batch of N-
sided dice any given number of times. The output from DITHR is
largely self-explanatory. The graph is expanded to use all of the
space available. The scale factor is printed on the sheet. If a
scale factor of 3.00 were computed, three asterisks would corre-
spond to one occurrence. Ycu can replot the results to any scale by
using the numbers at the right of the page. The numbers labeled as
"theoretical™ are what you would expect from the average of a very
large number of throws. To operate this program, punch the follow-

ing data cards (FREE STYLE) :*

1. A title card (your name, date, etc.--whatever you like).

This card will ke reproduced on the printed output to
let you identify your results.

2. A card, or cards, containing the following numbers in
this sequence:

NDICE The number of dice in the batch.

NSIDE The number of sides on each die.

NTHROW The number of times the batch of dice is to be
thrown.

N A starter for the generator of random numbers--
a positive, odd integer less than 30,000. You
should invent your own number N.

9999

For a simple case of NDICE = 100, NSIDE = 25, and NTHROW =
100, the output appears in Figure 1 on the following page.

*See notes on punching data cards further in the text.
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Notes on Punching Cards

Data to be read by a computer usually has to satisfy rigid
requirements about columns, spaces, etc. However, data for student
programs can be entered in a much more liberal fashion. This is
true of those programs where data is indicated as being FREE STYLE.

For such programs, the order in which your numbers .opear is
important. Any given number must be entered with all digits punched
together and no spaces, commas, Or any other characters between dig-
its. The one exception to this is that a decimal point wili be hon-
ored if it is punched. You may not use column 80; you may not split

a number between two cards. Use only eight digits per number.

As Punched As Interpreted

95 95.
- .95 - 0.95
123,456.7 123 456.7 (2 numbers)
123456789.12 2? (more than 8 digits)
X=15, Y =3 15 3

9999 0

The last item on your cards should be the number 9999, This sig-
nifies no further data in this batch. (On occasion, the data for a
single program may consist of more than one batch.) The number
9999 should always appear on the same card as your last data item,
except when you are explicitly directed otherwise.

If you make an error_ in punching: back up and punch XXXX over

the entire wrong entry--including sign and decimal point. Space on
to a clean part of the card and punch it correctly.

If you need to use a big number: a form of scientific nota-
tion is allowed; the number 3.4192 x 10® would be punched 3.4192E+08
and the number -6.62 x 10-23 would be punched - 6.62E-23. Consult
your instructor (or instruction sheets) befcre using this feature.

Radioactive Decay II

In the last laboratory we investigated a possible model of a
radioactive source. This model assumed the source to be a large
number of identical nuclear states, each with an identical probabil-
ity of undergoing a transition in any interval of time. For each
system in our sample, the occurrence of a transition was determined
purely by chance; the mechanism for making this decision was not
considered. We compared the behavior of the source with the behav-
ior of a set of dice so constructed that the average number of
"heads" agreed with the average number of counts from our source.

In making this comparison we explicitly neglected one factor--
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that a nuclear state can only undergo this transition once. We
can make this conclusion on the grounds of conservation of Mass-
Energy, since the "triggering" of the detector by the transition
rust require some energy. Thus, one characteristic of the two
states of the system must be that the second state has a lower
Mass-Energy than the first. (This is always true of any transi-
tion that occurs spontaneously.)

A nuclear system which has undergone a transition is now in
a different state and can no longer be counted among those systems
which have a probability of undergoing a transition. It is, of
course, possible that this new state will itself be unstable, hav-
ing some probability--maybe very different--of changing to a third
state, which in turn may change to a fourth state, and so on, thus
forming a radioactive series. We will only consider the case where
the second state is stable.

Our dice-throwing model needs only a minor modification to
take this one-shot transition factor into account. Namely, when-
ever a die comes up "heads"--corresponding to a transition--we
remove it from the sample. It is obvicus that the number of dice
in our sample must get progressively smaller, and that as the sam-
ple gets smaller, the number coming up "heads" will also get smal-
ler.

Question: What does the number of counts on the Geiger counter
correspond to--the number in the sample, or the number that come
up heads? .

l. Try Zie experiment with a batch of coins, tossing them
repeatedly and removing at each toss those that come
up heads. Plot a graph of the number in the sample
before each throw and of the number coming up heads vs
the number of throws. On the same graph, plot what
would have happened if exactly half had come up heads
at each toss. Did you run into any problems making
this last plot? If so, what did you decide was meant
by "half a head"? Did you get a straight line graph?

The reason you did not observe this sort of steady decrease
in the counting rate in the last lab was that the probability of
transition was low and the number of nuclei was large. While re-
moving three from a sample of 1023 alters very little, taking three
from a sample of six makes a big difference.

Our task now is to find a way of making a meaningful ccmpari-
son between the data derived from our model and that which you will
get rxrom the actual radioactive sample. It is important to realize
that we will not detect all of the transitions in our source, but
only some fraction of them, determined by the size of our detector,
its distance from the source, etc. Thus, all of our measurements
are relative, and we cannot learn the actual number of nuclei or
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